

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

THERMAL STRESSES OF A TRIMATERIAL MEDIUM IN A NONUNIFORM TEMPERATURE FIELD

by

Michael Joseph Neibert

March 1993

Thesis Advisor: Co-Advisor:

David Salinas Young Kwon

Approved for public release; distribution is unlimited

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden. To Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302 and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

Davistinginary: sente recu; minington; 1-1 cees	E apple and to the office of moneyement and	STORY CONTROL NO.	7100), VVasinington, DC 20303
1. AGENCY USE ONLY (Leave black	nk) 2. REPORT DATE March 1993	3. REPORT TYPE AND DATE Master's Thesis Ma	
4. TITLE AND SUBTITLE	March 1999		IDING NUMBERS
Thermal Stresses of a Temperature Field	Trimaterial Medium in		
6. AUTHOR(S) Michael Joseph Neibe	ert		
7. PERFORMING ORGANIZATION N	AME(S) AND ADDRESS(ES)		FORMING ORGANIZATION ORT NUMBER
Naval Postgraduate S Monterey, CA 93943			
9. SPONSORING/MONITORING AG	ENCY NAME(S) AND ADDRESS(ES		ONSORING / MONITORING
Naval Postgraduate S Monterey, CA 93943		AG	ENCY REPORT NUMBER
• ,			
·	are those of the author ar Defense or the U.S. Gove		al policy or position
12a. DISTRIBUTION / AVAILABILITY	STATEMENT	12b. D	ISTRIBUTION CODE
Approved for public re	elease: distribution is unl	imited	
			•
13. ABSTRACT (Maximum 200 word	is)		
nonuniform temperat the resulting shear a element model utilizi lateral displacement o is, Young's Modulus a the geometric proper	this investigation was to ure field on the system be nd normal stresses alonging a recently developed continuity is employed. Find coefficient of thermal ties, that is, length and study of the effect of a normal	havior of a trilayered me the media interfaces are element which provides irst, the effect of the mate expansion, is examined d thickness dimensions	dium. In particular, e analyzed. A finite for both axial and erial properties, that Then, the effect of of the midlayer, is
14. SUBJECT TERMS Thermoelastic Stresse	es, Multilayered Media,		15. NUMBER OF PAGES 108
Nonuniform Tempera	· ·		16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
unclassified	unclassified	unclassified	SAR

Approved for public release: Distribution is unlimited.

Thermal Stresses of a Trimaterial Medium in a Nonuniform Temperature Field

by

Michael Joseph Neibert Lieutenant, United States Navy B.S., Colorado State University, 1981

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL March 1993

Author:	Mily A Man	
	Michael Joseph Neibert	
Approved by: _	David Jalinas	
	David Salinas, Thesis Advisor	
	It aluk Kun	
\	Noung Kwon, Co-Advisor	
	Matthew-Kellehn	
	Matthew D. Kelleher, Chairman	
	Department of Mechanical Engineering	

ABSTRACT

The objective of this investigation was to conduct a parametric study of the effect of a nonuniform temperature field on the system behavior of a trilayered medium. In particular, the resulting shear and normal stresses along the media interfaces are analyzed. A finite element model utilizing a recently developed element which provides for both axial and lateral displacement continuity is employed. First, the effect of the material properties, that is, Young's Modulus and coefficient of thermal expansion, is examined. Then, the effect of the geometric properties, that is, length and thickness dimensions of the midlayer, is analyzed. Finally, a study of the effect of a nonuniform temperature field on the trimaterial medium is conducted.

DTIC QUALITY INSPECTED 5

Acce	ssion For	
DTIC Unan	GRA&I	0
	ibution/	adas
A-1	Avail and, Special	or

TABLE OF CONTENTS

I.	INTRODUCTION 1
II.	FEM MODEL FORMULATION 5
	A. PROGRAM DEVELOPMENT
	B. PROGRAM INPUT 12
	C. PROGRAM OUTPUT 13
Ш.	EFFECT OF MATERIAL PROPERTIES 14
	A. CASES 1 AND 2
	B. CASES 3, 4, AND 5 20
	C. CASES 3, 6, 7, AND 8 24
	D. CASES 7, 9, 10, AND 11
	E. SUMMARY 29
IV.	EFFECT OF MIDLAYER THICKNESS
	A. NORMAL STRESS DISTRIBUTION
	B. SHEAR STRESS DISTRIBUTION
	C. SUMMARY 45
V.	EFFECT OF MIDLAYER LENGTH 49
	A. NORMAL STRESS DISTRIBUTION 49
	B. SHEAR STRESS DISTRIBUTION
	C. SUMMARY 56

VI. EFFECT OF NONUNIFORM TEMPERATURE DISTRIBUTION	57
A. NORMAL STRESS DISTRIBUTION	58
B. SHEAR STRESS DISTRIBUTION	30
C. SUMMARY	34
VII. SUMMARY AND CONCLUSIONS	36
A. EFFECT OF MATERIAL PROPERTIES	36
B. EFFECT OF MIDLAYER THICKNESS	37
C. EFFECT OF MIDLAYER LENGTH	37
D. EFFECT OF NONUNIFORM TEMPERATURE DISTRIBUTION	38
E. RECOMMENDATIONS FOR FURTHER RESEARCH	38
APPENDIX A: FEM PROGRAM	39
APPENDIX B: PROGRAM EXEC	76
APPENDIX C: INPUT FILE	77
APPENDIX D: OUTPUT FILE	31
LIST OF REFERENCES	98
INITIAL DISTRIBUTION LIST	aa

LIST OF FIGURES

Figure 1.1	Electronic Package 2
Figure 1.2	Tri-Material Configuration
Figure 2.1	A Typical Element With Six Degrees of Freedom 5
Figure 2.2	Finite Element Analysis Mesh for Tri-Material Configuration
Figure 3.1	Tri-Material Configuration
Figure 3.2	Normal Stress at Interfaces for Cases 1 and 2
Figure 3.3	Shear Stress at Interfaces for Cases 1 and 2
Figure 3.4	Shear and Normal Stresses on the Midlayer for Cases 1 and 2
Figure 3.5	Normal Stress at Interfaces for Cases 3, 4, and 5 21
Figure 3.6	Shear Stress at Interfaces for Cases 3, 4, and 5 22
Figure 3.7	Shear and Normal Stresses on the Midlayer for Cases 3, 4, and 5
Figure 3.8	Normal Stress at Interfaces for Cases 3, 6, 7, and 8 25
Figure 3.9	Shear Stress at Interfaces for Cases 3, 6, 7, and 8 26
Figure 3.10	Shear and Normal Stresses on the Midlayer for Cases 3 and 8
Figure 3.11	Shear and Normal Stresses on the Midlayer for Cases 6 and 7
Figure 3.12	Normal Stress at interfaces for Cases 7, 9, 10, and 11 30
Figure 3.13	Shear Stress at interfaces for Cases 7, 9, 10, and 11,

Figure 3.14	Shear and Normal Stresses on the Midlayer for Cases 7 and 9	32
Figure 3.15	Shear and Normal Stresses on the Midlayer for Cases 10 and 11	33
Figure 4.1	Tri-Material Configuration for Cases 5, 12, 13, 14, and 15.	37
Figure 4.2	Normal Stresses at the Interfaces for Case 5, 12, 13, 14, and 15	38
Figure 4.3	2-D and 3-D Plots of Normal Stress/Maximum Normal Stress at the Upper Interface for Cases 5, 12, 13, 14, and 15	40
Figure 4.4	2-D and 3-D Plots of Normal Stress/Maximum Normal Stress at the Lower Interface for Cases 5, 12, 13, 14, and 15	41
Figure 4.5	Shear and Normal Stresses on the Midlayer for Cases 5, 12, and 13	42
Figure 4.6	Shear and Normal Stresses on the Midlayer for Cases 14 and 15	43
Figure 4.7	Shear Stresses at the Interfaces for Cases 5, 12, 13, 14, and 15	44
Figure 4.8	2-D and 3-D Plots of Shear Stress/Maximum Shear Stress at the Upper Interface for Cases 5, 12, 13, 14, and 15	
Figure 4.9	2-D and 3-D Plots of Shear Stress/Maximum Shear Stress at the Lower Interface for Cases 5, 12, 13, 14, and 15	
Figure 5.1	Tri-Material Configurations for Cases 12, 16, 17, 18, 19, and 20	50
Figure 5.2	Normal Stresses at Interfaces as a Function of Non-dimensional Location for Cases 12, 16, 17, 18, 19, and 20	51
Figure 5.3	Shear and Normal Stresses on the Midlayer for	53

Figure 5.4	Shear and Normal Stresses on the Midlayer for Cases 18, 19, and 20
Figure 5.5	Shear Stresses at Interfaces as a function of Non-dimensional Location for Cases 12, 16, 17, `18, 19, and 20
Figure 6.1	Tri-Material Configuration for Cases 21, 22, 23, and 24 57
Figure 6.2	Material A Linear Temperature Distribution for Case 24 58
Figure 6.3	Normal Stresses at the Interfaces for Cases 21, 22, 23, and 24
Figure 6.4	Shear and Normal Stresses on the Midlayer for Cases 21 and 22
Figure 6.5	Shear and Normal Stresses on the Midlayer for Cases 23 and 24
Figure 6.6	Shear Stresses at the Interfaces for Cases 21, 22, 23, and 24

I. INTRODUCTION

The history of thermoelastic stresses on layered materials begins with Timoshenko. In a 1925 paper [Ref. 1], he first discussed the case of a directly bonded bi-material configuration. He studied bi-material thermostats modeled in the form of high aspect ratio beams subjected to uniform heating or cooling. Bearing stresses in closed form expressions were presented and it was noted that there was not an elementary way of determining the shear stress distribution along the bearing surface. The curvature of the beams at a given temperature was shown to be related to the beam geometry, the elastic constants of the materials, and their coefficients of thermal expansion.

Goland and Reissner [Ref. 2] and Christensen [Ref. 3] studied the shear and peeling stresses along the interface of single lap adhesive joints subjected to axial loads. Goland and Reissner derived closed form analytical solutions which showed that the peak peeling and shear stresses occurred at the joint edges. Additionally, it was shown that all stresses depended on the joint dimensions and the stiffness properties of the plates. Christensen performed his analysis using the finite element method. He determined that a large stress gradient existed across the thickness of the adhesive as well as along the lap, especially near the ends of the lap. Neither study investigated the effect of temperature on system behavior. Burgreen [Ref. 4] analytically

computed interfacial shear stresses in layered beams and examined the behavior of a bi-metallic beam subjected to a transverse temperature variation.

Lau [Ref. 5] derived closed form stress analysis solutions for a chip in a semi-infinite substrate and a chip on substrate with finite thickness subjected to temperature rises.

A typical electronic package consists of a semi-conductor (chip) attached to a substrate material by an adhesive as depicted in Figure 1.1. Placing more power in an ever decreasing space is the trend in electronic component packaging. Power densities of 12.5 MW/m³ have been reached by today's integrated circuit technology [Ref. 6] and future integrated circuits are expected to have at least twice this power density leading to higher operating temperatures. The resulting high operating temperatures give rise to thermal cycling causing thermal fatigue at the different material interfaces and can lead to premature failure of the circuit. To prevent failure, a maximum temperature of between 100°C and 110°C at a semiconductor junction has been set by the military [Ref. 7].

Figure 1.1 Electronic Package

While conducting a literature search, numerous studies concerning the topic of thermal response of electronic packages was uncovered. In perhaps one of the most extensive studies, Suhir [Ref. 8] reviewed work conducted on bimaterial and tri-material electronic packages that were either subjected to a uniform temperature or an applied axial load. For the bi-material configuration, it was determined that the maximum peeling and shear stresses along the interface occurred at the outer edges of the assembly. Additionally, it was shown that the stresses depended upon the axial and interfacial compliances of the component layers.

Royce [Ref. 9], Riches [Ref. 10], and Chung [Ref. 11] all state that the primary cause of mechanical stresses that are induced in electronic packages are a result of the difference in coefficients of thermal expansion of the different materials in the assembly. Royce commented that thermal cycling during normal operation could give rise to thermal fatigue at the various material interfaces and could lead to premature failure of the structure. Rich reported that the types of stresses that arose from thermal mismatch consisted of stresses normal to the chip and interfacial stresses. He predicted that normal stresses in the chip were at a maximum in the chip center and decreased to zero at the chip edge. However, the interfacial stresses were zero at the center and rose to a maximum at the edge. Rich concluded that compliance and thickness of the chip attachment materials were critical to controlling the stresses imposed. Two ways to reduce or avoid thermally

induced stresses in electronic packages was proposed by Chung. The first was stress reduction by coefficient of thermal expansion matching and the second was stress reduction by the use of extremely flexible adhesives.

The purpose of this investigation was to gain further insight and understanding into the effects that the various system parameters have on thermally induced behavior of an electronic package as shown on Figure 1.1.

To achieve this, the electronic package was generalized into a tri-material configuration as displayed in Figure 1.2 and a parametric study was conducted using finite element analysis. First, the effect of the material properties, Young's Modulus and coefficient of thermal expansion, was examined. Next, the length of the midlayer was varied. Then, the effect of midlayer thickness on system behavior was studied. Finally, nonuniform temperature fields were imposed on the tri-material configuration.

Figure 1.2 Tri-Material Configuration

II. FEM MODEL FORMULATION

The purpose of this investigation was to determine the stresses resulting from a nonuniform temperature field on a tri-material configuration. To accomplish this, a finite element method (FEM) program was constructed. This program is presented in Appendix A and the program exec is in Appendix B.

A. PROGRAM DEVELOPMENT

A recently developed element which provides for both axial and lateral displacement continuity was utilized in the stress formulation. As shown in Figure 2.1, each element has six degrees of freedom; axial displacements at the four corner points; and lateral displacements at the two ends.

Figure 2.1 A Typical Element With Six Degrees Of Freedom

The lateral displacement field is determined by linear interpolation

$$\tilde{\mathbf{v}}^{\mathbf{e}} = N_1 \mathbf{v}_1^{\mathbf{e}} + N_2 \mathbf{v}_2^{\mathbf{e}} \tag{2.1}$$

where v_1 and v_2 are the lateral displacements at the ends and where the linear shape functions N_1 and N_2 are given by

$$N_1 = \frac{1}{l}(l-x)$$
 $N_2 = \frac{x}{l}$ (2.2)

resulting in

$$\mathbf{v}(x) = \sum_{i=1}^{2} N_{i}(x)\mathbf{v}_{i}$$
 (2.3)

The axial displacement field is assumed to be linear in both the axial and transverse direction. That is,

$$\tilde{u}_{1}^{e} = H_{1}^{b} u_{1}^{b} + H_{1}^{t} u_{1}^{t} \tag{2.4}$$

$$\tilde{u}_{2}^{e} = H_{2}^{b} u_{2}^{b} + H_{2}^{t} u_{2}^{t} \tag{2.5}$$

where superscripts b and t refer to the bottom and top respectfully. The linear shape functions H_1 and H_2 are given by

$$H_1^b = H_2^b = \frac{1}{h}(h-y)$$
 $H_1^t = H_2^t = \frac{y}{h}$ (2.6)

resulting in

$$u(x,y) = \sum_{i=1}^{2} N_i(x) [H_1(y)u_i^b + H_2(y)u_i^t]$$
 (2.7)

From strain-displacement relations

$$\varepsilon_{x} = \frac{\partial u}{\partial x} = \frac{\partial}{\partial x} \left(\sum_{i=1}^{2} N_{i}(x) H_{1}(y) u_{i}^{b} + \sum_{i=1}^{2} N_{i}(x) H_{2}(y) u_{i}^{t} \right)$$
(2.8)

or

$$\varepsilon_x = \sum_{i=1}^2 \frac{\partial N_i}{\partial x} (H_1 u_i^b + H_2 u_i^t) \tag{2.9}$$

and

$$\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \tag{2.10}$$

$$\gamma_{xy} = \frac{\partial}{\partial y} \left\{ \sum_{i=1}^{2} N_i (H_1 u_i^b + H_2 u_i^t) \right\} + \frac{\partial}{\partial x} \left\{ \sum_{i=1}^{2} N_i v_i \right\}$$
(2.11)

or

$$\gamma_{xy} = \sum_{i=1}^{2} N_{i} \left\{ \frac{\partial H_{1}}{\partial y} u_{i}^{b} + \frac{\partial H_{2}}{\partial y} u_{i}^{t} \right\} + \sum_{i=1}^{2} \frac{\partial N_{i}}{\partial x} v_{i}$$
 (2.12)

The derivatives of the linear shape functions are

$$\frac{\partial N_1}{\partial \mathbf{r}} = -\frac{1}{l} \qquad \frac{\partial N_2}{\partial \mathbf{r}} = \frac{1}{l} \qquad \frac{\partial H_1}{\partial \mathbf{v}} = -\frac{1}{h} \qquad \frac{\partial H_2}{\partial \mathbf{v}} = \frac{1}{h} \tag{2.13}$$

This results in

$$\varepsilon_{x} = \frac{H_{1}(y)}{l} (u_{2}^{b} - u_{1}^{b}) + \frac{H_{2}(y)}{l} (u_{2}^{t} - u_{1}^{t})$$
 (2.14)

and

$$\gamma_{xy} = \frac{N_1(x)}{h} \{ u_1^t - u_1^b \} + \frac{N_2(x)}{h} \{ u_2^t - u_2^b \} + \frac{v_2 - v_1}{l}$$
 (2.15)

Defining the axial displacement vector as

$$\{\delta_B\}^T = \langle u_1^b \quad u_1^t \quad u_2^b \quad u_2^b \rangle \tag{2.16}$$

and the stiffness matrix as

$$[K_B] = \int_0^1 \int_0^h \{B\} E\{B\}^T dy dx \qquad (2.17)$$

where the B vector is

$$\{B\}^{T} = \langle \frac{\partial N_{1}}{\partial x} H_{1} \frac{\partial N_{1}}{\partial x} H_{2} \frac{\partial N_{2}}{\partial x} H_{1} \frac{\partial N_{2}}{\partial x} H_{2} \rangle \qquad (2.18)$$

and the force vector due to temperature as

$$\{F_B\} = \frac{Eh}{6l} \int_0^l \int_0^h \{B\} E\alpha \Delta T dy dx \qquad (2.19)$$

gives the bending matrix equation as

$$[K_n]\{\delta_n\}=\{F_n\} \tag{2.20}$$

Equation 2.20 defines the bending behavior. Additionally, the stiffness matrix can be shown as

$$[K_B] = \frac{Eh}{6l} \begin{bmatrix} 2 & 1 & -2 & -1 \\ 1 & 2 & -1 & -2 \\ -2 & -1 & 2 & 1 \\ 1 & -2 & 1 & 2 \end{bmatrix}$$
 (2.21)

Behavior due to shear is obtained as follows. Define the row vector of displacement degrees of freedom as

$$\{\delta_{\mathbf{S}}\}^{T} = \langle u_1^b \quad u_1^t \quad \mathbf{v}_1 \quad u_2^b \quad u_2^t \quad \mathbf{v}_2 \rangle \tag{2.22}$$

The shear stiffness matrix is given by

$$[K_S] = \int_0^1 \int_0^h \langle B \rangle G \langle B \rangle dy dx \qquad (2.23)$$

where

$$\langle B \rangle = \langle N_1 \frac{\partial H_1}{\partial y} \quad N_2 \frac{\partial H_2}{\partial y} \quad \frac{\partial N_1}{\partial x} \quad N_2 \frac{\partial H_1}{\partial y} \quad N_2 \frac{\partial H_2}{\partial y} \quad \frac{\partial N_2}{\partial x} \rangle \qquad (2.24)$$

which gives the equations for shear behavior

$$[K_s]\{\delta_s\}=\{0\} \tag{2.25}$$

Additionally, the stiffness matrix can be shown as

$$[K_{S}] = G \begin{bmatrix} \frac{l}{4h} & \frac{-l}{4h} & \frac{1}{2} & \frac{l}{4h} & \frac{-l}{4h} & -\frac{1}{2} \\ \frac{-l}{4h} & \frac{l}{4h} & \frac{-1}{2} & \frac{-l}{4h} & \frac{l}{4h} & \frac{1}{2} \\ \frac{1}{2} & \frac{-1}{2} & \frac{h}{l} & \frac{1}{2} & \frac{-1}{2} & \frac{-h}{l} \\ \frac{l}{4h} & \frac{-l}{4h} & \frac{1}{2} & \frac{l}{4h} & \frac{-l}{4h} & \frac{-1}{2} \\ \frac{-l}{4h} & \frac{l}{4h} & \frac{-1}{2} & \frac{-l}{4h} & \frac{l}{4h} & \frac{1}{2} \\ \frac{-1}{2} & \frac{1}{2} & \frac{-h}{l} & \frac{-1}{2} & \frac{1}{2} & \frac{h}{l} \end{bmatrix}$$

$$(2.26)$$

The system matrix for bending and shear is

$$[K] = [K_B] + [K_S] \tag{2.27}$$

Let

$$a = \frac{Gl}{4h} \qquad b = \frac{Gh}{l} \qquad c = \frac{Eh}{6l} \qquad d = \frac{G}{2} \tag{2.28}$$

then

$$[K] = \begin{bmatrix} a+2c & -a+c & d & a-2c & -a-c & -d \\ -a+c & a+2c & -d & -a-c & a-2c & d \\ d & -d & b & d & -d & -b \\ a-2c & -a-c & d & a+2c & -a+c & -d \\ -a-c & a-2c & -d & -a+c & a+2c & d \\ -d & d & -b & -d & d & b \end{bmatrix}$$

$$(2.29)$$

The force vector due to a temperature field is

$$\{F^{\sigma}\} = \Omega^{\sigma} \int_0^l \int_0^h \{B\} dy dx \qquad (2.30)$$

where

$$\Omega^{e} = (E\alpha\Delta T)^{e} \tag{2.31}$$

or

$$\{F^{e}\} = \Omega^{e} \int_{0}^{l} \int_{0}^{h} \begin{cases} \frac{\partial N_{1}}{\partial x} H_{1} \\ \frac{\partial N_{2}}{\partial x} H_{2} \\ 0 \\ \frac{\partial N_{2}}{\partial x} H_{1} \\ \frac{\partial N_{2}}{\partial x} H_{2} \\ 0 \end{cases}$$

$$(2.32)$$

Let

$$\Lambda^e = \Omega^e \frac{h}{2} \tag{2.33}$$

then

$$\{F^e\} = \Lambda^e \begin{cases} -1 \\ -1 \\ 0 \\ 1 \\ 1 \\ 0 \end{cases}$$

$$(2.34)$$

After solving

$$[K]{\delta}={F} \tag{2.35}$$

for $\{\delta\}$, the stresses can be calculated. For the e^{th} element, the bending stress is

$$\sigma_{x} = E \varepsilon_{x} \tag{2.36}$$

or

$$\sigma_x^{b_4} = \frac{1}{l} (u_2^b - u_1^b) = \frac{\delta_4 - \delta_1}{l}$$
 (2.37)

$$\sigma_x^{t_e} = \frac{1}{l} (u_2^t - u_1^t) = \frac{\delta_5 - \delta_2}{l}$$
 (2.38)

where σ_x^{be} and σ_x^{te} are the bending stresses acting on the e^{th} element at the

bottom and top respectfully. The shear stress is

$$\tau_{xy} = G\gamma_{xy} \tag{2.39}$$

or

$$\tau_{xy}^{b_a} = G \left\{ \frac{u_1^t - u_1^b}{h} + \frac{v_2 - v_1}{l} \right\} = G \left\{ \frac{\delta_2 - \delta_1}{h} + \frac{\delta_6 - \delta_3}{l} \right\}$$
 (2.40)

$$\tau_{xy}^{t_{e}} = G \left\{ \frac{u_{2}^{t} - u_{2}^{b}}{h} + \frac{v_{2} - v_{1}}{l} \right\} = G \left\{ \frac{\delta_{5} - \delta_{4}}{h} + \frac{\delta_{6} - \delta_{3}}{l} \right\}$$
(2.41)

where $\tau_{xy}^{\ \ be}$ and $\tau_{xy}^{\ \ te}$ are the shear stresses acting on the eth element at the bottom and top respectfully. Finally

$$\tau_{AVE}^{e} = \frac{G}{2} \left\{ \frac{(\delta_{2} + \delta_{5}) - (\delta_{1} + \delta_{4})}{h} + \frac{2(\delta_{6} - \delta_{3})}{l} \right\}$$
(2.42)

B. PROGRAM INPUT

The input file for the finite element program is displayed in Appendix C. A mesh grid with 200 elements as shown in Figure 2.2 is generated. The input file allows for variation in both the element layer thicknesses and the element row widths. Values for Young's Modulus, Poisson's Ratio, and the coefficient of thermal expansion can be inputted row by row. Additionally, the temperature for each level of the mesh can be inputted. Appendix C is annotated, showing the placement of the different inputs. All dimensions are in millimeters.

C. PROGRAM OUTPUT

The output file from the finite element program is shown in Appendix D. The force and displacement vectors for each node are outputted. The top and bottom bending stresses and shear stress for each element are also displayed. Additionally, the normal stresses along the material A and material B interface and the material B and material C interface are outputted.

Figure 2.2 Finite Element Analysis Mesh For Tri-material Configuration

III. EFFECT OF MATERIAL PROPERTIES

This chapter studies the effect of Young's Modulus and the coefficient of thermal expansion on the tri-material configuration of Figure 3.1. Several computer runs were made assigning different Young's Modulus values to the three materials while maintaining a constant coefficient of thermal expansion value. No stresses resulted. As a consequence, the remainder of this chapter is concerned with variations in the coefficient of thermal expansion (α_i) . Table 3.1 shows the parameters used for the 11 cases that were evaluated. For all cases, Young's Modulus was given a constant value of 100 GPa for the three materials and a change in temperature of 100°C was imposed.

Figure 3.1 Tri-material Configuration

TABLE 3.1 COEFFICIENT OF THERMAL EXPANSION STUDY

CASE	$\alpha_{A} (10^{-6})$	$\alpha_{\rm B} \ (10^{-6})$	$\alpha_{\rm C} \ (10^{-6})$
1	100	50	100
2	100	200	100
3	300	100	10
4	300	10	100
5	100	300	10
6	150	100	10
7	200	100	10
8	400	100	10
9	200	100	1
10	200	100	50
11	200	100	75

The eleven cases were grouped into four combinations to allow comparisons to be made. The combinations were:

- Cases 1 and 2. α_A and α_C were set equal and α_B was allowed to range from one-half α_A , α_C to twice α_A , α_C .
- Cases 3, 4, and 5. α_A , α_B , and α_C were given different values in different combinations.
- Cases 3, 6, 7, and 8. α_B and α_C were held constant but at different values while α_A was allowed to range at values greater than α_B and α_C .
- Cases 7, 9, 10, and 11. α_A and α_B were held constant but at different values while α_C was allowed to range at values less than α_A and α_B .

A. CASES 1 AND 2

Cases 1 and 2 investigated how the tri-material configuration responded when the top and bottom layers (materials A and C) held the same value of the coefficient of thermal expansion while the middle layer was given values lower (case 1) and higher (case 2).

Figure 3.2 is a plot of the normal stress along the upper interface (between materials A and B) and lower interface (between materials B and C) as a function of position. For case 1, both the upper and lower interfaces are in tension, showing that the top and bottom layers with their larger amount of expansion, wanting to peel away from the middle layer. In case 2, the normal stresses at the upper and lower interfaces are all compressive, that is, have bearing stresses. The middle layer wants to expand more than the top and bottom layers and pushes against them. For both cases, the maximum stresses occur at the ends of the configuration.

Figure 3.3 is a graph of the shear stresses acting on the upper and lower interfaces. The shear stresses for case 1 tend to axially extend the midlayer while the shear stresses for case 2 tend to axially compress the midlayer. Figure 3.4 shows the shear and normal stresses acting on the midlayer for cases 1 and 2.

Figure 3.4 Shear And Normal Stresses On The Midlayer For Cases 1 And 2

B. CASES 3, 4, AND 5

Cases 3, 4, and 5 investigated the response of the tri-material configuration when all three layers had different values for the coefficients of thermal expansion. Case 3 was arranged with magnitudes as: $\alpha_A > \alpha_B > \alpha_C$, case 4 as: $\alpha_A > \alpha_C > \alpha_B$, and case 5 as: $\alpha_A > \alpha_C > \alpha_C$.

Figure 3.5 is a plot of the normal stresses as a function of position along the upper and lower interfaces. Case 3, with the coefficients of thermal expansion in decreasing order from top to bottom, displayed minimal peeling stresses along the interfaces. Case 4, with the coefficient of thermal expansion lowest in the midlayer, exhibited characteristics similar to case 1. The normal stresses were peeling on both interfaces. Case 5, with the coefficient of thermal expansion in the middle layer the largest, behaved like case 2. The normal stresses along the upper and lower interfaces were bearing throughout.

The plots for the shear stresses along the upper and lower interfaces are shown in Figure 3.6. In case 3 the shearing stresses were the lowest, with material B wanting to elongate axially along the upper interface. The midlayer wanted to axially elongate for case 4 and to axially compress for case 5. This was the same behavior that was observed for cases 1 and 2, respectfully. Figure 3.7 displays the shear and normal stresses acting along the midlayer interface.

Figure 3.7 Shear And Normal Stresses On The Midlayer For Cases 3, 4, And 5

C. CASES 3, 6, 7, AND 8

This study compared the responses of the tri-material configuration when α_B and α_C were held constant at values lower than α_A (with $\alpha_B > \alpha_C$), and α_A was then allowed to increase as follows: α_A (case 6) < α_A (case 7) < α_A (case 3) < α_A (case 8).

Figure 3.8 is a graph of the normal stresses along the upper and lower interfaces for the midlayer. When the value of the coefficient of thermal expansion for the upper layer was kept reasonably close to the coefficient of thermal expansion of the midlayer (within a factor of two) as shown by cases 6 and 7, the normal stresses tended to be minimal and were mainly bearing. However, when α_A was further increased as in cases 3 and 8, the magnitudes of the normal stresses increased and became peeling throughout the upper and lower midlayer interfaces.

The shear stress plot for the upper and lower interfaces is given in Figure 3.9. Cases 6 and 7 resulted in shearing stresses at both ends of the upper and lower interfaces with minimal shear stresses along the majority of the interface lengths. In cases 3 and 8, the shearing stresses on both interfaces tended to axially stretch the midlayer with case 8 having a larger magnitude of stress. Figures 3.10 and 3.11 display the shear and normal stresses acting on the midlayer for cases 3, 6, 7, and 8.

Figure 3.10 Shear And Normal Stresses On The Midlayer For Cases 3 And 8

Figure 3.11 Shear And Normal Stresses On The Midlayer For Cases 6 And 7

D. CASES 7, 9, 10, AND 11

In this grouping, the coefficients of thermal expansion for materials A and B were held constant at values greater than material C (with $\alpha_A > \alpha_B$), and α_C was allowed to increase as follows: α_C (case 9) < α_C (case 7) < α_C (case 10) < α_C (case 11).

Figure 3.12 is a plot of the upper and lower interface normal stresses for the four cases. Similar characteristics were displayed by cases 7 and 9. Along the upper interface the normal stress was initially peeling, decreased to zero, and then became bearing. At the lower interface the normal stresses were initially bearing, went to zero, and then became peeling. For cases 10 and 11 the normal stresses were peeling on both the upper and lower interfaces.

A plot of the shear stresses acting on the midlayer is shown in Figure 3.13. As can be seen, along the upper interface all four cases displayed similar shear stress characteristics with the surface being pulled in axial tension. However, at the lower interface, cases 7 and 9 showed axial compression while cases 10 and 11 displayed axial tension. The shear and normal stresses acting on the midlayer for these four cases are shown in Figure 3.14 and 3.15.

E. SUMMARY

A review of the peeling and shear stresses acting along the upper and lower interfaces reveals force equilibrium in both the lateral and axial directions. However, moment equilibrium is not satisfied exactly. This

Figure 3.14 Shear And Normal Stresses On The Midlayer For Cases 7 And 9

Figure 3.15 Shear And Normal Stresses On The Midlayer For Cases 10 And 11

deviation is most probably a result of the type of finite element that was chosen.

As expected, when materials A and C were given the same properties, symmetrical stress conditions resulted. This was clearly shown in cases 1 and 2. When the coefficient of thermal expansion in the midlayer was smaller, the upper and lower layers wanted to separate from the middle layer. When the coefficient of thermal expansion for the midlayer was greater, the top and bottom layers tended to compress it.

Maximum peeling stresses occurred when the coefficient of thermal expansion for the top or bottom layer was much greater than the middle layer as shown in case 4. Similarly, the maximum bearing stresses arose when the midlayer coefficient of thermal expansion was greater than the upper and lower layers as evidenced by case 5.

The relative difference in the coefficient of thermal expansion between the layers played a similar role for the shear stresses. The maximum tendency to axially elongate the midlayer occurred when the coefficient of thermal expansion for the middle layer was much less than the upper or lower layers. Additionally, the maximum tendency to axially compress the midlayer happened when the coefficient of thermal expansion for the midlayer was much greater than the top or bottom layers.

Minimal normal stresses resulted when the values of the coefficients of thermal expansion for the upper, middle, and lower approached each other. The conditions for minimum shearing stresses were the same.

The study of cases 7, 9, 10, and 11 produced an interesting result. As can be seen, cases 7 and 9 exhibited very similar stress states even though the coefficients of thermal expansion for the bottom layer differed by a factor of ten. More computer runs were conducted, further reducing the coefficient of expansion by several factors of ten. The changes in the state of stress was minimal.

Finally, when the coefficient of thermal expansion for the tri-material configuration was kept constant and uniform, changing of the Young's Modulus values did not produce any resulting thermally induced stresses.

IV. EFFECT OF MIDLAYER THICKNESS

This chapter investigates the effect of changing the thickness of the midlayer (material B) on the tri-material configuration. Five different midlayer thickness cases were studied and compared. As displayed in Figure 4.1, the following thicknesses for material B were used: 1.00mm (case 5), 0.50mm (case 12), 0.25mm (case 13), 0.10mm (case 14), and 0.05mm (case 15). For all cases, the dimensions of materials A and C were kept constant (10mm length and 1.0mm thickness). Additionally, the length of the midlayer was held at 5mm and the tri-material configuration was given a temperature increase of 100°C. The material properties for the five cases were given the following constant values: $E_A = E_B = E_C = 100 \text{ GPa}$, $\alpha_A = 100 \times 10^{-6}$ °C, $\alpha_B = 300 \times 10^{-6}$ °C, and $\alpha_C = 10 \times 10^{-6}$ °C.

A. NORMAL STRESS DISTRIBUTION

Plots of the normal stresses along the upper and lower interfaces of the midlayer for the five cases are displayed in Figure 4.2. Both the upper and lower normal stress distributions exhibited similar characteristics. The stresses were always bearing along the interfaces for all five cases with the maximum stresses occurring at the left and right ends of the midlayer. For every case, the minimum bearing stress was developed midspan of the interface. As the thickness of material B was decreased, the bearing stresses

Figure 4.1 Tri-Material Configuration For Cases 5, 12, 13, 14, And 15

Figure 4.2 Normal Stresses At The Interfaces For Cases 5, 12, 13, 14, And 15

similarly decreased. However, the shape of the normal stress distribution curves remained comparable.

Comparisons were made between the maximum of the normal stresses of all five cases on the upper and lower interfaces and the remainder of the normal stresses. Figures 4.3 and 4.4 are two-dimensional and three-dimensional plots of the normal stress/maximum normal stress for the five cases across the upper and lower interfaces, respectfully. For both interfaces, the maximum normal stress occurred in case 5 at the right hand side of the midlayer. Similar characteristics were displayed by all cases for both the upper and lower. As the thickness of the midlayer decreased, the ratio of the normal stress to the maximum normal stress decreased. Of interest was that the thinner material B became, the extent of the midspan that was at a minimum grew. Figures 4.5 and 4.6 show the bearing stresses acting along the upper and lower interfaces of material B.

B. SHEAR STRESS DISTRIBUTION

Figure 4.7 contains plots of the shear stresses across the upper and lower interfaces of material B for cases 5, 12, 13, 14, and 15. Cases 5 and 12 (with their greater thicknesses of material B) displayed similar attributes. The shear stresses, upper and lower, tended to axially compress the midlayer. Cases 13, 14, and 15 (with midlayer thicknesses of 0.25mm, 0.10mm, and 0.05mm) showed peak shear stresses at the left and right ends of the interfaces, but along the majority of the length of span the shear stresses

Figure 4.3 2-D And 3-D Plots Of Normal Stress/Maximum Normal Stress At The Upper Interface For Cases 5, 12, 13, 14, And 15

Figure 4.4 2-D And 3-D Plots Of Normal Stress/Maximum Normal Stress At The Lower Interface For Cases 5, 12, 13, 14, And 15

Figure 4.5 Shear And Normal Stresses On The Midlayer For Cases 5, 12, And 13 $\alpha_{\rm A} = 100 \times 10^{\text{-6}} \text{/C} \quad \alpha_{\rm B} = 300 \times 10^{\text{-6}} \text{/C} \quad \alpha_{\rm C} = 10 \times 10^{\text{-6}} \text{/C} \quad E_{\rm A} = E_{\rm B} = E_{\rm C} = 100 \, \text{GPa}$

 $\alpha_A = 100 \times 10^{-6} / ^{\circ} \mathrm{C} \quad \alpha_B = 300 \times 10^{-6} / ^{\circ} \mathrm{C} \quad \alpha_C = 10 \times 10^{-6} / ^{\circ} \mathrm{C} \quad E_A = E_B = E_C = 100 \; \mathrm{GPa}$ Figure 4.6 Shear And Normal Stresses On The Midlayer For Cases 14 And 15

fluctuated around zero. This fluctuation of positive and negative values of the shear stresses from point to point may have been due to a breakdown in the finite element program in dealing with the very small numerical values present.

Comparisons of the ratio of the shear stress at a point to the maximum shear stress found in the group were conducted. Figures 4.8 and 4.9 are two-dimensional and three-dimensional plots of the shear stress/maximum shear stress for the five cases along the upper and lower interfaces, respectfully. For both the upper and lower, the maximum shear stress was located at the left end of material B. The two figures were similar, with the shear stress ratios being maximum at the extreme ends of the midlayer and then decreasing to a minimum towards midspan. Of interest, like the normal stress, was that as the thickness decreased, the range of the midspan that was at a minimum increased. Figures 4.5 and 4.6 display the shear stresses acting along the upper and lower interfaces for the midlayer.

C. SUMMARY

The effect of decreasing midlayer thickness on the tri-material configuration was displayed in a number of ways. The normal stresses remained bearing throughout as the midlayer became thinner. The maximum normal and shear stresses decreased with decreasing thickness. Minimal normal and shear stresses extended out further along the span and the stress distributions became more local in nature with the thinning of material B. A conclusion

Figure 4.8 2-D And 3-D Plots Of Shear Stress/Maximum Shear Stress At The Upper Interface For Cases 5, 12, 13, 14, And 15

Figure 4.9 2-D And 3-D Plots Of Shear Stress/Maximum Shear Stress At The Lower Interface For Cases 5, 12, 13, 14, And 15

that could be drawn would be that as the thickness of the midlayer continues to decrease, that the only stresses of any consequence along the span exist at the extreme left and right ends of the interfaces. The normal stresses were only one-third to one-half the shear stresses. For both the upper and lower interfaces the maximum normal stresses remained at the far left edge in all cases. The maximum shear stresses along the lower interface moved from the left edge to the right edge as the midlayer thickness was decreased. Finally, the maximum shear stresses along the upper interface remained at the left edge for all cases.

V. EFFECT OF MIDLAYER LENGTH

In this chapter, the effect of the length of the midlayer (material B) on the tri-material configuration was investigated. Six different midlayer lengths were compared and studied. As shown in Figure 5.1, the following lengths for material B were used: 9mm (case 16), 7.5mm (case 17), 5mm (case 12), 2.5mm (case 18), 1mm (case 19), and 0.5mm (case 20). For all cases, the dimensions of materials A and C were kept constant (10mm length and 1mm thickness). Additionally, the thickness of the midlayer was held at 0.5mm and the trimaterial configuration was given a temperature increase of 100°C. The material properties for the six cases were as follows: $E_A = E_B = E_C = 100$ GPa, $\alpha_A = 100 \times 10^{-6}$ °C, $\alpha_B = 300 \times 10^{-6}$ °C, and $\alpha_C = 10 \times 10^{-6}$ °C.

A. NORMAL STRESS DISTRIBUTION

Figure 5.2 contains plots of the normal stresses across the upper and lower interfaces of material B for the six cases. To allow comparison of the different cases the abscissa was constructed to be a non-dimensional location, with the distance along the interface being divided by the total midlayer length for that case.

In all six cases, the normal stresses remained bearing across the entire span for both the upper and lower interfaces. Cases 12, 16, 17, and 18 (with midlayer lengths of 5mm, 9mm, 7.5mm, and 2.5mm, respectfully) displayed

Figure 5.1 Tri-material Configurations For Cases 12, 16, 17, 18, 19, And 20

Figure 5.2 Normal Stress At Interfaces As A Function Of Non-dimensional Location For Cases 12, 16, 17, 18, 19, And 20

similar characteristics. The maximum bearing stresses occurred at the left and right ends of the midlayer with the minimum being developed at midspan. For midlayer lengths of 9mm and 7.5mm, the stress along the midspan was negligible. As the length was further decreased to 5mm and 2.5mm, the midspan normal stresses increased. The stresses at the left and right ends similarly increased but to a much lesser extent as the length of the above mentioned four cases decreased.

Cases 19 and 20, with the short midlayer lengths of 1mm and 0.5mm, displayed distinctly different normal stress distributions than the four other cases. The left ends of the interfaces had relatively low bearing stresses. Across the remaining 90% of the span, the stress distribution was quite uniform. Figures 5.3 and 5.4 display the normal stresses acting along the upper and lower interfaces of the midlayer.

B. SHEAR STRESS DISTRIBUTION

Plots of the shear stresses along the upper and lower interfaces of the midlayer for cases 12, 16, 17, 18, 19, and 20 are displayed in Figure 5.5. Like the normal stress distribution plots, the abscissa was constructed to be a non-dimensional location, with the distance along the interface being divided by the total midlayer length for that case.

All six cases showed similar attributes with both the upper and lower shear stresses tending to axially compress the midlayer. Additionally, the peak stresses occurred at the extreme left and right ends of the interfaces. For

Figure 5.3 Shear And Normal Stresses On The Midlayer For Cases 12, 16, And 17 $\alpha_{A} = 100 \times 10^{-6} \text{/C} \quad \alpha_{B} = 300 \times 10^{-6} \text{/C} \quad \alpha_{C} = 10 \times 10^{-6} \text{/C} \quad E_{A} = E_{B} = E_{C} = 100 \text{ GPa}$

Figure 5.4 Shear And Normal Stresses On The Midlayer For Cases 18, 19, And 20 $\alpha_{\rm A} = 100 \times 10^{-6} / ^{\circ} \rm C \quad \alpha_{\rm B} = 300 \times 10^{-6} / ^{\circ} \rm C \quad \alpha_{\rm C} = 10 \times 10^{-6} / ^{\circ} \rm C \quad E_{\rm A} = E_{\rm B} = E_{\rm C} = 100 \; \rm GPa$

Material B Length (mm)

Figure 5.5 Shear Stress At Interfaces As A Function Of Non-dimensional Location For Cases 12, 16, 17, 18, 19, And 20

the greatest length of material B, case 16 with L_B = 9mm, the only non-negligible shear stresses appeared at the ends of the interfaces. As the midlayer length decreased, the extent of the span that experienced appreciable shear stress increased. This is clearly displayed in Figures 5.3 and 5.4.

C. SUMMARY

The effect of changing the midlayer length on the tri-material configuration was shown in numerous ways. As the material B length is shortened, the normal stresses tend to increase and become uniformly distributed across the span. The shear stress became distributed across a greater extent of the interface as the length of the midlayer lessened. The nature of the normal stresses was always bearing and were much less than the shear stresses generated. As the length of the midlayer was decreased to 1mm, shear and normal stresses increased. However, further reduction in length resulted in a slight decrease of both stresses. Except for the shortest length where it was at the right hand edge, the maximum shear stresses occurred at the left hand edge for the upper and lower interfaces. The maximum normal stresses on both interfaces stayed at the right edge. Finally, the maximum upper normal stresses were 10 to 30 percent greater than the maximum lower normal stresses.

VI. EFFECT OF NONUNIFORM TEMPERATURE DISTRIBUTION

Chapters III, IV, and V considered the tri-material configuration as having a uniform temperature increase of 100°C ($\Delta T = 100$ °C). In this chapter the temperature increases of the three materials were allowed to vary, and the results were studied and compared. The physical dimensions of the trimaterial configuration used in this chapter are shown in Figure 6.1. Materials A and C were both given a length of 10mm and a height of 1mm. Material B was given a length of 2.5mm and a height of 0.1mm. The material properties supplied for all cases studied were as follows: $E_A = E_B = E_C = 100$ GPa, $\alpha_A = 100 \times 10^{-6}$ °C, $\alpha_B = 300 \times 10^{-6}$ °C, and $\alpha_C = 10 \times 10^{-6}$ °C.

Figure 6.1 Tri-material Configuration For Cases 21, 22, 23, And 24

Four different cases were examined. In case 21, all three materials were allowed a temperature rise of 100°C ($\Delta T_A = \Delta T_B = \Delta T_C = 100$ °C). A temperature increase of 200°C for materials A, B, and C ($\Delta T_A = \Delta T_B = \Delta T_C = 200$ °C) was studied in case 22. For case 23, material A was assigned a temperature

rise of 200°C while materials B and C were permitted 100°C temperature increases ($\Delta T_A = 200$ °C, $\Delta T_B = \Delta T_C = 100$ °C). Finally, for case 24, material A was allowed to have a linearly decreasing temperature profile. The top layer of material A was set at a temperature increase of 200°C and the temperature rise was then lessened until at the interface of materials A and B the temperature increase was 100°C. This profile is shown in Figure 6.2. Materials B and C were allowed 100°C rises in temperature ($\Delta T_A = \text{linear}$, $\Delta T_B = \Delta T_C = 100$ °C).

Figure 6.2 Material A Linear Temperature Distribution For Case 24

A. NORMAL STRESS DISTRIBUTION

The normal stresses acting along the upper and lower interfaces of the midlayer for the four cases are shown in Figure 6.3. Similar characteristics were displayed for both the upper and lower normal stress distributions. The maximum stresses occurred at the far left and right ends of the interfaces and were always bearing. For the majority of the midspan the normal stresses were minimal.

Figure 6.3 Normal Stresses At The Interfaces For Cases 21, 22, 23, And 24

A comparison between case 21 and case 22 revealed an interesting point. Case 22, with a tri-material configuration temperature rise of 200°C, resulted in normal stresses which were twice the value of the normal stresses of case 21 ($\Delta T_A = \Delta T_B = \Delta T_C = 100$ °C). This showed the direct relationship between system temperature increase and the resulting increase in normal stresses.

When only material A was given a larger temperature rise, as in case 23 ($\Delta T_A = 200$ °C, $\Delta T_B = \Delta T_C = 100$ °C), the change in system behavior for normal stresses when compared to a uniform temperature field (case 21) was minimal. Along the upper interface the response was nearly identical, with the only difference being the marginally larger bearing stress at the extreme right end for case 23. Across the lower interface, case 23 normal stress values were continuously slightly less than those of case 21.

When the temperature rise in material A was allowed to linearly decrease through its thickness, as in case 24, the resulting normal stress distributions were the lowest of the four cases studied. The maximum stresses developed were approximately one-half of the maximum for the uniform temperature field case.

Figures 6.4 and 6.5 display the normal stress distributions acting on the upper and lower interfaces of the midlayer for the four cases.

B. SHEAR STRESS DISTRIBUTION

Figure 6.6 contains the plots of the shear stress distributions across the upper and lower interfaces for cases 21, 22, 23, and 24. The resulting curves

nd 22	or Cases 21 A	Stresses On The Midlayer For Cases 21 And 22	Stresses On 1	Shear And Normal S	Shea	Figure 6.4
	100	100	200	100	(C)	$\Delta \Gamma_{ m C}$
	100	100	200	100	(C)	$\Delta T_{ m B}$
	Linear	200	700	100	(C)	$\Delta \Gamma_{ m A}$

_				֓֞֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֟֝֓֓֓֓֓֓֡֓֓֡֡֓֓֡֓֓֡֓֡֓֡֓֡
CASE 24	Linear	100	100	66 9000 7 =
CASE 23	007	100	001	To Michon D.
CASE 22	200	200	200	many G. E. Chan And Mammal Changes On Mr. Midlanes Bon Cane 99 And
CASE 21	100	100	100	And Mount
	(C)	$\Delta T_{ m B}$ (°C)	$\Delta \Gamma_{ m C}$ (°C)	Chan
	$\Delta T_{\mathbf{A}}$	$\Delta T_{ m B}$	$\Delta \Gamma_{ m C}$	A O CE
				į

Figure 6.5 Shear And Normal Stresses On The Midlayer For Cases 23 And 24

Figure 6.6 Shear Stresses At The Interfaces For Cases 21, 22, 23, And 24

were similar for all four cases. The maximum shear stresses occurred at the extreme right and left ends of the interfaces. Along the majority of the length of span the shear stresses fluctuated around zero. This fluctuation may have been due to a breakdown in the finite element program in dealing with the very small numerical values present.

As with the normal stresses, a comparison of case 21 ($\Delta T_A = \Delta T_B = \Delta T_C = 100$ °C) with case 23 ($\Delta T_A = \Delta T_B = \Delta T_C = 200$ °C) shows that the shear stresses at every point for the higher temperature increase were twice the value of those stresses for the lower temperature rise. This also displayed the direct relationship between system temperature increase and the resulting increase in shear stresses.

Case 23 ($\Delta T_A = 200$ °C, $\Delta T_B = \Delta T_C = 100$ °C) and case 24 ($\Delta T_A = \text{linear}$, $\Delta T_B = \Delta T_C = 100$ °C) produced shear stress distribution values very close to case 21. This suggests that for the particular tri-material configuration chosen for the chapter, increasing the temperature rise for one material does not appreciably change the system's shear stress response.

Displays of the shear stress distributions acting on the upper and lower interfaces for the four cases are shown in Figures 6.4 and 6.5.

C. SUMMARY

A study of the effects of a nonuniform temperature field produced a number of interesting results. A doubling of the system temperature rise resulted in a doubling of the normal and shear stresses. Normal stresses remained bearing in different uniform and nonuniform temperature fields. The normal and shear stress distributions maintained the same general shapes regardless of temperature distribution. Increasing the temperature rise in just one material resulted in minimal change in system response. Finally, a temperature rise which was allowed to linearly decrease through the thickness of one material resulted in the lowest normal stress distributions.

VII. SUMMARY AND CONCLUSIONS

The results of this investigation into the behavior of a tri-material medium subjected to a temperature field leads to several conclusions. These conclusions are broken down into the following topics: effect of material properties, effect of thickness of midlayer, effect of length of midlayer, and effect of nonuniform temperature field.

A. EFFECT OF MATERIAL PROPERTIES

When both the temperature rise and the coefficients of thermal expansion were kept uniform throughout the system and only Young's Modulus was allowed to vary, no normal or shear stresses were developed.

Changing the coefficient of thermal expansion produced several results. As the mismatch between the coefficients of thermal expansion of the materials became greater, the normal and shear stress magnitudes along the upper and lower interfaces became greater. The shear stresses developed along the interfaces were much greater than the normal stresses. Depending on the values of the coefficients of thermal expansion, the normal stresses were either bearing or peeling. Finally, along the upper and lower interfaces the normal and shear stresses were very local in nature. Only in the immediate area of the left and right corners of the interface were the stresses significant.

B. EFFECT OF MIDLAYER THICKNESS

For the particular tri-material configuration studied the normal stresses remained bearing as the midlayer became thinner. The maximum normal and shear stresses decreased with decreasing material B thickness. As the midlayer was made thinner, the normal and shear stress distributions became more and more local in nature. It is believed that as the midlayer becomes extremely thin, the only stresses of any consequence would exist at the extreme left and right corners of the interfaces. The shear stresses generated were two to three times greater than the normal stresses. As the thickness of material B was decreased, the location of the maximum shear stress along the lower interface moved from the inner edge to the outer edge. However, along the upper interface the maximum shear stress remained fixed at the inner edge. Lastly, the maximum normal stress stayed at the left edge for both the upper and lower interfaces.

C. EFFECT OF MIDLAYER LENGTH

With the tri-material configuration used the resulting shear stresses were much greater than the normal stresses. The normal stresses developed were always bearing. As midlayer length was decreased to 1mm, the normal and shear stresses increased. Further shortening of the length of the midlayer resulted in slight decrease of the shear and normal stresses. On both interfaces the maximum shear stress occurred at the left hand edge. The only exception was the shortest length, where the maximum shear stress appeared

at the right hand edge. The maximum normal stress was experienced at the right hand edge for both the upper and lower interfaces. Additionally, the upper maximum normal stress was approximately 10 to 30 percent larger than the lower maximum normal stress.

D. EFFECT OF NONUNIFORM TEMPERATURE DISTRIBUTION

When the temperature rise for all three materials of the system was doubled, the result was a doubling of the normal and shear stresses. The normal stresses remained bearing and the shear and normal stress distributions maintained the same general shapes regardless of the temperature distribution. Increasing the temperature rise in just the upper layer resulted in minimal change in system response. Finally, a linearly decreasing temperature rise gave the lowest magnitude normal stress distributions.

E. RECOMMENDATIONS FOR FURTHER RESEARCH

A number of different areas for further research in this topic exist. Validate the tri-material response to nonuniform temperature fields by using a larger number of system configurations. Alter the finite element code to allow study of the system response to transient temperature fields. Refine the tri-material configuration to more closely match electronic component packaging. Finally, investigate the effect of thermal cycling on fatigue.

APPENDIX A FEM PROGRAM

```
FEM PROGRAM FOR WELD PROBLEM
COMPILE AND RUN THIS CODE WITH THE SINGLE EXEC COMMAND: WELD
            THE NUMBER OF ELEMENTS
           THE NUMBER OF SYSTEM NODES
THE NUMBER OF SYSTEM DEGREES OF FREEDOM
   NODES
   NDOF
            THE NUMBER OF ESSENTIAL BOUNDARY CONDITIONS
   NBC
   IBC
            THE SUPPRESSED DEGREES OF FREEDOM
            THE NUMBER OF APPLIED FORCES
   NFC
            THE SYSTEM NODES WITH APPLIED LOADS
   IFC
   ICORR
           THE CORRESPONDENCE BETWEEN LOCAL AND SYSTEM DOF
           NUMBER OF DIFFERENT MATERIALS
   NMAT
   IMAT
           A PARTICULAR MATERIAL
   ITYPE
           = 0 FOR B.C.'S AT LEFT END ONLY,
           = 1 FOR B.C.'S AT BOTH LEFT AND RIGHT ENDS
           YOUNGS MODULUS OF IMAT MATERIAL SHEAR MODULUS OF IMAT MATERIAL
   E
   G
           THE X COORDINATE OF A NODE
   HITE
           THE HEIGHT OF AN ELEMENT
   ZLEN
           THE LENGTH OF AN ELEMENT
            THE 6 BY 6 ELEMENT STIFNESS MATRIX
   EK
   SYSMAT THE NDOF BY NDOF SYSTEM STIFFNESS MATRIX
   FLOAD
           THE MAGNITUDE OF AN APPLIED LOAD
           THE SYSTEM FORCE VECTOR
   FORCE
           THE SYSTEM DISPLACEMENT VECTOR
   DELTMP THE TEMPERATURE CHANGE
           THERMAL COEFFICIENT OF EXPANSION
   ALPHA
   NNSCOL THE NUMBER OF NONSOLDERED COLUMNS
   NSCOL
           THE NUMBER OF SOLDERED COLUMNS
           THE NUMBER OF ROWS IN THE CHIP
THE NUMBER OF ROWS IN THE SUBSTRATE
   NIROW
   N3ROW
   PLSTRS THE PEELING STRESS AT THE NODE TO THE RIGHT OF THE
           COLUMN NUMBER
   N3STRT ELEMENT NUMBER BEFORE START OF LOWER SOLDER
     INCLUDE 'WELDCOMN'
     CHARACTER+20 NAME
     COMMON /WORKSP/RWKSP
     REAL RWKSP(137047)
     CALL IWKIN (137047)
     READ *, NAME
  NOTE; INPUT THE NAME OF THE FILE TO BE OPENED AS FOLLOWS:
                '/FN FT'
  THE FILENAME MUST BE PRECEDED WITH A '/ AND THE FILETYPE MUST BE
  FOLLOWED BY A '. THE ONLY SPACE IS BETWEEN FN AND FT.
     OPEN(9, FILE= NAME )
     INPUT THE FEM PARAMETERS
```

READ(9,*) NEL, NODES, NMAT, NDOF, NBC, NFC, ITYPE

```
READ(9,*) (IBC(I), I = 1,NBC)
     DO 50 IB = 1,NBC
  50 CONTINUE
     IF (NFC .NE. 0) THEN
        READ(9,+) (IFC(I), FLOAD(I), I = 1,NFC)
        DO 70 IF = 1,NFC
  70
        CONTINUE
          ELSE
     ENDIF
     DO 80 IM = 1, NMAT
     READ(9,81) E(IM), POISS(IM), ALPHA(IM), HITE(IM)
  80 CONTINUE
  81 FORMAT (4F10.7)
     READ(9,22) (X(IN), IN = 1, NODES)
     DO 999 ILL - 1, NEL
     READ(9,20) IL, IMAT(ILL), (ICORR(ILL, IN), IN = 1,6), INODE(ILL, 1),
    & INODE(ILL,2)
999 CONTINUE
20 FORMAT(1014)
22 FORMAT(7F10.5)
     READ(9,*) DELTMP
     READ(9,*) (TEMP(I), I = 1, NMAT+1)
     WRITE(14,*) ' '
     WRITE(14,*) 'DELTMP = ', DELTMP
   CALCULATE THE SHEAR MODULII
     WRITE(14,*) ' '
     WRITE(14,*) 'IMAT#, E, G MODULII, ALFA, POISSON AND HEIGHT FOLLOW'
     WRITE(14,*) '
     DO 100 IM = 1, NMAT
     G(IM) = 5.*E(IM)/(12.*(1+POISS(IM)))
     WRITE(14,105) IM, E(IM), G(IM), ALPHA(IM), POISS(IM), HITE(IM)
 100 CONTINUE
 105 FORMAT(3X, I3,2X,5E12.5)
     WRITE(14, +) ' '
     DO 350 I = 1,NDOF
     FORCE(I) = 0.0
     DO 340 J = 1, NDOF
     SYSMAT(I,J) = 0.0
 340 CONTINUE
 350 CONTINUE
  THE ELEMENT DO LOOP TO 500 FORMS THE SYSTEM MATRIX AND VECTOR
     DO 500 IEL = 1, NEL
     IM = IMAT(IEL)
   FORM THE ELEMENT STIFFNESS MATRICES
     IL = INODE(IEL, 1)
     IR = INODE(IEL, 2)
```

```
(ZLEN(IEL) = X(IR) - X(IL)
H = HITE(IM)
    EE = E(IM)
    GG = G(IM)
    A = GG*ZLEN(IEL)/(4.*H)
    B = GG + H/ZLEN(IEL)
    C = EE*H/(6.*ZLEN(IEL))
    D = 0.5*GG
    AP2C = A + 2.*C
    ZMAPC = - A + C
    AM2C = A - 2.*C
    ZMAMC = -A - C
    EK(1,1) = AP2C
    EK(1,2) = ZMAPC
    EK(1,3) = D
    EK(1,4) = AM2C

EK(1,5) = ZMAMC
    EK(1,6) = -D
    EK(2,1) = ZMAPC
    EK(2,2) = AP2C
    EK(2,3) = -D
    EK(2,4) = ZMAMC
    EK(2,5) = AM2C
    EK(2,6) = D
    EK(3,1) = D
    EK(3,2) = -D
    EK(3,3) = B
    EK(3,4) = D

EK(3,5) = -D
    EK(3,6) = -B
    EK(4,1) = AM2C
    EK(4,2) = ZMAMC
    EK(4,3) = D
    EK(4,4) = AP2C
    EK(4,5) = ZMAPC
    EK(4,6) = -D
    EK(5,1) = ZMAMC
    EK(5,2) = AM2C
    EK(5,3) = -D
    EK(5,4) = ZMAPC
    EK(5,5) = AP2C
    EK(5,6) = D
    EK(6,1) = -D

EK(6,2) = D
    EK(6,3) = -B
    EK(6,4) = -D
    EK(6,5) = D
    EK(6,6) = B
 ASSEMBLE ELEMENT MATRICES INTO GLOBAL STIFFNES MATRIX
    DO 480 ID = 1,6
    IN = ICORR(IEL, ID)
    DO 480 JD = 1,6
    JN = ICORR(IEL, JD)
    SYSMAT(IN,JN) = SYSMAT(IN,JN) + EK(ID,JD)
480 CONTINUE
```

```
٦
```

```
4500 CONTINUE
   CONSTRUCT THE FORCE VECTOR DUE TO TEMPERATURE CHANGE
     WRITE(14,*) ''
IF (DELTMP .NE. 0.0) THEN
        DO 550 IEL = 1, NEL
        IM = IMAT(IEL)
        CHI2 = E(IM) * ALPHA(IM) * (2.*TEMP(IM) + TEMP(IM+1)) * HITC(IM) / 6.
        CHI1 = E(IM) *ALPHA(IM) * (TEMP(IM) + 2.*TEMP(IM+1)) *HITE(IM)/6.
        I1= ICORR(IEL,1)
        I2= ICORR(IEL,2)
        I4= ICORR(IEL,4)
        IS= ICORR(IEL,5)
        FORCE(I1) = FORCE(I1) - CHI1
        FORCE(12) = FORCE(12) - CHI2
        FORCE(I4) = FORCE(I4) + CHI1
        FORCE(I5) = FORCE(I5) + CHI2
        CONTINUE
 550
     ELSE
     ETDIF
   MODIFY STIFFNESS MATRIX AND FORCE VECTOR FOR BOUNDARY CONDITIONS
     DO 610 I = 1,NBC
     II = IBC(I)
     DO 600 J = 1, NDOF
     SYSMAT(II,J) = 0.0
 600 CONTINUE
     SYSMAT(II,II) = 1.
     FORCE(II) = 0.0
 610 CONTINUE
     IF(ITYPE - EQ. 1) THEN READ(9,*) ILASTTOP
        WRITE(14, ±) ' '
        WRITE(14,*) 'B.C. S AT BOTH ENDS; ILASTTOP = ', ILASTTOP DO 620 IN = 1, NDOF
        SYSMAT(ILASTTOP, IN) = 0.0
 620
        CONTINUE
        SYSMAT(ILASTTOP, ILASTTOP) = 1.
        SYSMAT(ILASTTOP, NDOF) = -1.
        FORCE(ILASTTOP) = 0.0
     ELSE
     ENDIP
     IF (NFC .NE. 0) THEN
        DO 630 IF = 1,NFC
        II = IFC(IF)
        FORCE(II) = FORCE(II) + FLOAD(IF)
 630
        CONTINUE
     ELSE
     ENDIF
   SOLVE THE SYSTEM OF EQUATIONS FOR THE DISPLACEMENTS
     CALL DLSARG(NDOF, SYSMAT, NPARAM, FORCE, 1, U)
  PRINT THE FORCE AND DISPLACEMENT VECTORS
```

```
WRITE(14,*) ' '
   WRITE(14,*) ' FORCE AND DISPLACEMENT VECTORS FOLLOW' WRITE(14,*) '
     DO 680 IDOF - 1, NDOF
     WRITE(14,641) IDOF, FORCE(IDOF), U(IDOF)
 680 CONTINUE
 641 FORMAT(2X, I4, 4X, E12.5, 10X, E12.5)
   CALCULATE THE STRESSES
     DO 700 IEL = 1, NEL
     I1 = ICORR(IEL,1)
I2 = ICORR(IEL,2)
     I3 = ICORR(IEL,3)
     I4 = ICORR(IEL,4)
     I5 = ICORR(IEL,5)
     I6 = ICORR(IEL,6)
     U1BOT = U(I1)
     U1TOP = U(I2)
     V1 = U(I3)
     U2BOT = U(I4)
     U2TOP = U(15)
     V2 = U(16)
     IM = IMAT(IEL)
     EE = E(IM)
     GG = G(IM)
     SIGMABOT(IEL) = EE*((U2BOT - U1BOT)/ZLEN(IEL) - ALPHA(IM)*
    & TEMP(IM+1))
     SIGNATOP (IEL) = EE*((U2TOP - U1TOP)/ZLEN(IEL) - ALPHA(IM) *TEMP(IM))
    TAUELEM(IEL) = GG^*((U1TOP - U1BOT) + (U2TOP - U2BOT)) / 
& (2.*HITE(IM)) + (V2 - V1)/ZLEN(IEL))
 700 CONTINUE
     WRITE(14,*) ' '
     WRITE(14,*) 'STRESSES FOLLOW'
WRITE(14,*) '
     WRITE(14, *)
                               SGMABOT
                                                 SGMATOP
                                                                   TAUELEM '
     PSI = E(1)*ALPHA(1)*DELTMP
     DO 800 IEL = 1,NEL
     IM = IMAT(IEL)
     SIGBTNDL = SIGMABOT(IEL)/PSI
     SIGTPNDL = SIGMATOP (IEL) /PSI
     TAUNDL = TAUELEM(IEL)/PSI
     WRITE(14,801) IEL, SIGMABOT(IEL), SIGMATOP(IEL), TAUELEM(IEL)
 800 CONTINUE
 801 FORMAT((2X, I4, 6(4X, G12.5)))
     WRITE(14, *) ' '
     READ(9, *) NNSCOL, NSCOL, N1ROW, N3ROW
     NCOL = NNSCOL + NSCOL
     DO 1300 IEL = 6, 70
     IM = IMAT(I \in L)
     PLFCE(IEL) = TAUELEM(IEL) *HITE(IM)
1300 CONTINUE
     II - 6
```

1

```
DO 1500 ICOL = 1,8
      IELF = 6 + (ICOL - 1)
IELL = IELF + 64
      PLF = 0.0
      DO 1400 IEL = IELF, IELL, 14
      PLF = PLF + PLFCE(IEL+1) - PLFCE(IEL)
 1400 CONTINUE
      UPLSTR(ICOL) = 2.*PLF/(X(II+2) - X(II))
      WRITE(14,31) ICOL, UPLSTR(ICOL)
      II = II + 1
1500 CONTINUE
      FORMAT(1X, 12, ' UPPER PEEL STRESS = ',G12.5)
31
      WRITE(14,*) ' '
      DO 1600 IEL = 121, 197
      IM = IMAT(IEL)
      PLFCE(IEL) = TAUELEM(IEL) *HITE(IM)
 1600 CONTINUE
      II = 6
      DO 1800 ICOL = 1,8
      IELF = 121 + (ICOL - 1)
      IELL = IELF + 76
      PLF = 0.0
      DO 1700 IEL = IELF, IELL, 17
      PLF = PLF + PLFCE(IEL+1) - PLFCE(IEL)
 1700 CONTINUE
      BPLSTR(ICOL) = (2.*PLF/(X(II+2) - X(II)))*(-1.0)
      WRITE(14,32) ICOL, BPLSTR(ICOL)
      II = II + 1
 1800 CONTINUE
      FORMAT(1X, 12, 'LOWER PEEL STRESS = ',G12.5)
32
٠
   COMPARE MOMENTS DUE TO BENDING AND PEEL STRESSES
      AVEFCE(1) = 0.5*(SIGMATOP(1) + SIGMABOT(1))*HITE(1)
      ZMOMARM(1) = .0562 - .014
      AVEFCE(2) = 0.5*(SIGMATOP(15) + SIGMABOT(15))*HITE(2)
      ZMOMARM(2) = .0562 - .028 - .007
      AVEFCE(3) = 0.5*(SIGMATOP(29) + SIGMABOT(29))*HITE(3)
      ZMOMARM(3) = .0562 - .028 - .014 - .0035
AVEFCE(4) = 0.5*(SIGMATOP(43) + SIGMABOT(43))*HITE(4)
      ZMOMARM(4) = .0035 + .00175
      AVEPCE(5) = 0.5*(SIGMATOP(57) + SIGMABOT(57))*HITE(4)
      ZMOMARM(5) = .00175
      ZMOHBDG = 0.0
      DO 1900 I = 1,5
      ZMOMBDG = ZMOMBDG + ZMOMARM(I) *AVEFCE(I)
 1900 CONTINUE
      ZMOMPEEL - 0.0
      DO 2000 I = 1,8
      II = 7 + I
      JJ = II - 2
      KK = II - 1
      W = 0.5*(X(II) - X(JJ))
Y = 0.25*(X(JJ) + X(II) +2.2X(KK))
      ZMOMPEEL = ZMOMPEEL + W*Y*UPLSTR(I)
 2000 CONTINUE
С
       WRITE(14, *) 'MOMPEEL = ', ZMOMPEEL
```

```
' ZMOMBDG = 0.0
IM = 0
Y2 = 0.056
DO 3000 I = 1,57,14
IM = IMAT(I)
Y1 = Y2 - HITE(IM)
AOV3 = (SIGMATOP(I) - SIGMABOT(I)) / (3.*HITE(IM))
BOV2 = 0.5*(SIGMATOP(I) - (Y2/HITE(IM)) * (SIGMATOP(I) - SIGMABOT(I)))
ZMOMBDG = ZMOMBDG + AOV3*(Y2**3-Y1**3) + BOV2*(Y2**2-Y1**2)
Y2 = Y1

3000 CONTINUE
SIGMAT = 1.052
SIGMAB = 2.3012
Y2 = .001
Y1 = .0005
B = SIGMAT - (Y2/.0005)*(SIGMAT-SIGMAB)
A = (SIGMAT-SIGMAB)/(.0005)
STOP
END
```

APPENDIX B PROGRAM EXEC

FORTVS2 WELD (AD(DBL4) ICA) FILEDEF 14 DISK WELD OUTPUT (RECFM FB LRECL 102 BLOCK 10200) LOAD WELD (START

APPENDIX C INPUT FILE


```
95
                                          103
13
20
27
34
                                                  102
12
19
26
33
                           95
5
                                                                            15
2
3
4
5
6
7
8
                                                           16
23
30
37
                   20
27
                                   16
                           19
26
33
40
   46
                    34
41
                                   30
37
                                           41
48
                                                   40
   48
                                                   47
                                                           44
51
58
65
72
79
   49
                                                   54
61
                    48
                                   44
                                           55
   50
51
52
53
                                           62
69
76
83
                    55
                           54
61
68
75
82
                                   51
                                   58
65
72
79
                    62
                                                   68
75
82
                                                                     9
                                                                           10
                    69
                                                                    10
                                                                           11
12
13
14
15
2
3
4
5
6
7
8
9
                   76
                                                                    11
   54
55
                                                                   12
13
                                                         86
93
100
9
16
23
30
                    83
                                           90
                                                 89
96
103
13
20
27
34
                                         97
104
14
21
28
35
                           89
96
                                   86
93
2
9
                   90
   56
                   97
7
                                                                   14
1
2
3
4
5
6
7
   57
                             6
             5
5
   58
                   14
                           13
                   21
28
                           20
27
                                   16
23
   59
   60
             5
                           34
41
48
                                  30
37
                                                   41
48
                                                           37
44
51
   61
                                          42
49
56
63
70
77
             5
5
5
                   35
   62
                   42
49
   63
                                   44
                                                   55
                  56
63
                           55
62
69
                                  51
58
65
                                                   62
69
                                                          58
65
72
79
   64
                                                                     8
            555555
   65
                                                                           10
11
12
13
                                                                     9
   66
                  70
                                                                   10
11
                                                  76
                                  72 84
79 91
86 98
93 105
                  77
84
                          76
83
   67
                                                   83
   68
                                                90
97
104
                                                                   12
13
                                                           86
                          90
97
   69
                  91
                                                           93
                                                                           14
15
7
   70
                  98
                                                         100
44
                                                                   14
6
7
8
9
                          42
49
                                  37
44
                                        107
108
   71
            6
                106
                                                   49
   72
            6
                107
                                                  56
                                                           51
                                                                             8
  73
                                                  63
70
77
                                                          58
65
            6
                108
                          56
                                  51
                                        109
                                                                            9
                109
110
                          63
70
   74
                                        110
111
            6
                                  58
                                                                           10
  75
            6
                                  65
72
79
                                                          72
79
86
                                                                          11
12
                                                                   10
                                       112
113
114
115
                          77
84
  76
            6
                111
                                                  84
                                                                   11
  77
            6
               112
                                                                  12
13
                                                                          13
14
                                                  91
  78
               113
114
                                                98
105
            6
                          91
                                  86
                                                          93
  79
                          98
                                  93
                                                                  14
6
7
                                                                          15
7
                                                        100
  80
            7
                116
                        106
                                  37
                                        117
                                                107
                                                          44
            7
  81
                117
                                  44
                        107
                                        118
                                                108
                                                          51
                                                                            8
  82
                                       119
120
121
                118
                                                                    8
9
                        108
                                  51
                                                109
                                                          58
                                                                            9
  83
            7
                119
                        109
                                               110
                                  58
                                                          65
                                                                           10
  84
            7
                120
                                                                  10
11
                                                                          11
12
                       110
                                  65
                                               111
                       111
112
                                  72
79
                                        122
123
                                               112
113
  85
            7
                121
                                                          79
  86
            7
                122
                                                          86
                                                                  12
                                                                          13
14
15
7
8
  87
                                               114
115
                                                                  13
14
            7
                123
                       113
                                  86
                                       124
                                                          93
               124 114
126 116
  88
                                       125
                                  93
                                                        100
  89
                                       127
128
                                                          44
51
                                  37
                                                                    6
7
                                                117
               127 117
128 118
  90
                                  44
                                                118
  91
                                  51
                                       129
                                                                            9
  92
                                       130
131
                129
                       119
                                  58
                                               120
                                                          65
                                                                    9
                                                                          10
  93
                130
                       120
                                  65
                                                                  10
11
12
                                                                          11
12
13
                                                          72
                                               122
123
 94
               131
                                  72
                                       132
                                                          79
               132
133
                       122
123
  95
                                  79
                                       133
                                                          86
                                 86 134
93 135
37 137
44 138
51 139
  96
                                                                          14
15
                                                124
                                                          93
                                                                  13
                      124
126
127
128
               134
136
  97
                                               125
                                                        100
 98
            9
                                               127
                                                                            7
 99
               137
138
                                                         51
                                               128
100
                                                          58
```

```
9 139 129
                   58 140 130
101
                                         10
102
        140
             130
                   65
                      141 131
                                72
                                         11
                      142 132
103
        141 131
                   72
                                79
                                         12
                                     11
104
        142 132
                   79
                      143 133
105
      9
        143 133
                   86
                      144
                          134
                                93
                                     13
                                         14
106
        144
      9
             134
                   93
                      145
                          135
                               100
                                     14
                                         15
107
        151 136
                   37 152 137
     10
                                44
108
                   44
                                          8
     10 152 137
                      153 138
                                51
109
     10
        153
             138
                   51 154
                           139
                                58
                                          9
                   58 155 140
110
     10 154 139
                                65
                                      9
                                         10
111
     10 155 140
                   65
                      156
                          141
                                72
                                     10
                                         12
13
        156 141
                                79
                                     11
112
     10
                   72
                      157
                           142
     10 157
                   79
                      158
                                86
113
             142
                           143
                                     12
114
     10 158 143
                   86
                      159
                                .93
                                         14
                          144
                                     13
                                         15
115
     10 159
             144
                   93 160 145 100
                                     14
116
     11 165
             146
                 164
                      171
                          147 170
                                      1
117
     11 171 147 170 177
                               176
                                          3
                          148
                                      2
     11 177
118
             148 176
                      183 149
                               182
                                      3
                                          5
     11 183 149
                 182 189 150
1:9
                                      4
                               188
1.)
     11 189 150 188
                      194
                          151
                                37
                                      5
     11 194 151
                   37
                      199 152
                                          7
121
                                44
                                      6
     11 199 152
                   44
                      204 153
                                      7
                                          8
122
                                51
123
     11
        204 153
                   51
                      209 154
                                58
                                      8
                                          9
     11 209 154
124
                   58
                      214
                          155
                                         10
                                65
                                      9
                                         11
12
125
     11 214 155
                   65
                      219
                          156
                                72
                                     10
                                79
126
     11 219 156
                   72 224 157
                                     11
                                         13
14
15
127
     11
        224
             157
                   79
                      229
                           158
                                86
                                     12
128
     11 229 158
                   86 234 159
                                93
                                     13
129
     11 234 159
                   93 239 160 100
                                     14
                                         16
17
130
     11 239 160 100 245 161 244
                                     15
     11 245 161 244
131
                      251
                          162 250
                                     16
                                         18
2
                      257 163 256
132
     11 251 162 250
                                     17
133
     12 166 165 164 172 171 170
                                      1
134
     12
        172
             171
                 170
                      178
                          177
                               176
                                      2
                                          3
     12 178 177 176 184 183
135
                                      3
                               182
136
     12 184 183 182 190 189
                               188
     12 190 189
                                           6
137
                 188 195 194
                                      5
                                37
138
     12 195 194
                   37
                      200
                           199
                                44
                                      6
                                          7
     12 200 199
                   44
139
                      205 204
                                      7
                                          8
                                51
140
     12 205 204
                   51 210 209
                                58
                                          9
     12 210 209
141
                   58
                      215
                                65
                                      9
                                         10
                          214
        215
142
     12
             214
                   65
                      220
                          219
                                72
                                     10
                                         11
143
     12 220 219
                   72
                      225 224
                                79
                                     11
                                         12
144
     12 225 224
                   79
                      230 229
                                86
                                     12
                                         13
                                         14
15
145
     12 230 229
                   86
                      235
                          234
                                93
                                     13
     12 235 234
146
                   93
                      240 239 100
                                     14
147
     12 240 239 100
                      246 245
                               244
                                     15
                                         16
148
     12 246 245 244 252 251 250
                                         17
                                     16
149
     12
        252 251 250
                      258
                          257
                               256
                                     17
                                          18
150
     13 167 166 164 173 172
                                          2
                               170
                                      1
151
     13 173 172 170 179 178
                               176
     13 179 178 176 185 184 182
152
                                      3
153
     13
        185 184
                 182
                      191 190
                               188
154
     13 191 190 188 196 195
                                37
155
     13 196 195
                   37 201 200
                                           7
156
     13 201 200
                   44 206 205
                                51
                                           8
                                          9
157
     13
        206 205
                   51
                      211
                          210
                                58
158
     13 211 210
                   58 216 215
                                65
                                      9
                                         10
     13 216 215
159
                   65 221 220
                                72
                                     10
     13 221 220
160
                   72 226 225
```

```
13 226 225
                  79 231 230
161
162' 13 231 230
                  86
                     236 235
                     241 240
                             100
                                       15
163
     13
        236 235
                  93
                                   14
                                       16
17
                                   15
164
     13
        241 240
                 100
                     247 246
165
     13 247 246
                 244 253 252
166
     13 253 252
                250 259 258
                             256
167
     14 168 167
                164 174 173
                             170
168
        174 173
     14
                 170 180 179
                              176
169
     14 180 179
                    186 185
                 176
                                        456789
170
     14 186 185
                              188
                 182 192 191
171
        192 191
                 188
                     197
                         196
                               37
172
     14 197 196
                  37
                     202 201
     14 202 201
173
                  44 207 206
                               51
174
     14 207 206
                  51 212 211
                               58
                     217 216
175
        212 211
                                    9
     14
                  58
                               65
                                       10
                                   10
11
                                       11
12
176
     14 217 216
                  65 222 221
                               72
177
     14 222 221
                  72 227 226
                               79
178
        227 226
                  79
                     232
                         231
                               86
                                       13
                                   13
                  86 237 236
179
     14 232 231
                              93
                                       14
180
     14 237 236
                  93 242 241
                              100
                                       16
17
                                   15
181
                 100 248 247
     14 242 241
                              244
182
        248 247
                 244
                     254 253
                              250
                                   17 1 2 3
183
        254 253
                250 260 259
     14
                                       18
2
3
4
5
6
7
8
9
184
     15 169 168
                 164 175 174
185
        175 174
                 170
                     181 180
     15
                              176
186
     15
        181 180
                 176
                     187 186
                              182
                                    4 5
187
     15 187 186
                              188
                 182 193 192
188
     15 193 192
                 188 198 197
                               37
189
     15
        198
            197
                  37
                     203 202
                               44
190
     15
        203 202
                     208 207
                  44
                               51
191
     15 208 207
                  51 213 212
                                    9
192
     15 213 212
                  58 218 217
                               65
                                       10
                                       11
12
193
     15
        218
            217
                  65
                     223
                         222
                               72
                                   10
194
     15 223 222
                               79
                  72 228 227
                                   11
195
     15 228 227
                  79
                     233 232
                               86
                                   12
196
     15 233 232
                  86
                     238 237
                               93
                                   13
                                       14
197
                                       15
     15
        238 237
                  93
                     243 242
                             100
                                   14
198
     15 243 242 100 249 248
                                   15
                                       16
     15 249 248 244 255 254
199
                                       17
200
     15 255 254 250 261 260 256
                                   17
                                       18
200.
100. 100.
5 9 5 5
```

6. Layer Temperature Rise

APPENDIX D OUTPUT FILE

DELTMP = 200.00000000000000

IMAT#, E, G MODULII, ALFA, POISSON AND HEIGHT FOLLOW

1	0.10000E+12	0.32051E+11	0.10000E-03	0.30000E+00	0.50000E+00
2	0.10000E+12	0.32051E+11	0.10000E-03	0.30000E+00	0.25000E+00
3	0.10000E+12	0.32051E+11	0.10000E-03	0.30000E+00	0.12500E+00
4	0.10000E+12	0.32051E+11	0.10000E-03	0.30000E+00	0.62500E-01
5	0.10000E+12	0.32051E+11	0.10000E-03	0.30000E+00	0.62500E-01
6	0.10000E+12	0.32051E+11	0.30000E-03	0.30000E+00	0.10000E-01
7	0.10000E+12	0.32051E+11	0.30000E-03	0.30000E+00	0.20000E-01
8	0.10000E+12	0.32051E+11	0.30000E-03	0.30000E+00	0.40000E-01
9	0.10000E+12	0.32051E+11	0.30000E-03	0.30000E+00	0.20000E-01
10	0.10000E+12	0.32051E+11	0.30000E-03	0.30000E+00	0.10000E-01
11	0.10000E+12	0.32051E+11	0.10000E-04	0.30000E+00	0.62500E-01
12	0.1000QE+12	0.32051E+11	0.10000E-04	0.30000E+00	0.62500E-01
13	0.10000E+12	0.32051E+11	0.10000E-04	0.30000E+00	0.12500E+00
14	0.10000E+12	0.32051E+11	0.10000E-04	0.30000E+00	0.25000E+00
15	0.10000E+12	0.32051E+11	0.10000E-04	0.30000E+00	0.50000E+00

FORCE AND DISPLACEMENT VECTORS FOLLOW

1	0.00000E+00	0.00000E+00
2	0.00000E+00	0.00000E+00
3	0.00000E+00	0.00000E+00
4	0.00000E+00	0.0000E+00
5	0.00000E+00	0.00000E+00

6	0.00000E+00	0.00000 E +00
7	0.00000E+00	0.0000E+00
8	0.00000E+00	0.160222-01
9	0.00000E+00	-0.51672E-02
10	0.0000E+00	0.12042E-01
11	0.00000E+00	0.10033E-01
12	0.0000E+00	0.90521E-02
13	0.0000E+00	0.85658E-02
14	0.0000E+00	0.80331E-02
15	0.00000E+00	0.32451E-01
16	0.00000E+00	-0.21458E-01
17	0.00000 E +00	0.24079E-01
18	0.00000E+00	0.19888E-01
19	0.00000E+00	0.177712-01
20	0.00000E+00	0.16716E-01
21	0.00000E+00	0.15765E-01
22	0.00000E+00	0.49296E-01
23	· 0.00000E+00	-0.50058E-01
24	0.00000E+00	0.36110E-01
25	0.00000E+00	0.29507E-01
26	0.00000E+00	0.26255E-01
27	0.00000E+00	0.24626E-01
28	0.0000E+00	0.22845E-01
29	0.00000E+00	0.57798E-01
30	0.00000E+00	-0.69213E-01
31	0.00000E+00	0.42198E-01
32	0.00000E+00	0.34279E-01
33	0.00000E+00	0.30238E-01
34	0.00000E+00	0.28255E-01
35	0.00000E+00	0.265462-01

36	0.00000 E+00	0.61934E-01
37	0.00000E+00	-0.80181E-01
38	0.00000E+00	0.45342E-01
39	0.00000E+00	0.36811E-01
40	0.00000E+00	0.32342E-01
41	0.00000E+00	0.29943E-01
42	-0.15000E+08	0.27144E-01
43	0.00000E+00	0.65005E-01
44	0.00000E+00	-0.88399E-01
45	0.00000E+00	0.47763E-01
46	0.00000E+00	0.38867E-01
47	0.00000E+00	0.34269E-01
48	0.00000E+00	0.31904E-01
49	0.00000E+00	0.29455E-01
50	0.0000E+00	0.68161E-01
51	0.00000E+00	-0.97019E-01
52	0.00000E+00	0.50215E-01
53	0.00000E+00	0.41041E-01
54	0.00000E+00	0.36432E-01
55	0.00000E+00	0.34170E-01
56	0.00000E+00	0.32225E-01
57	0.00000E+00	0.74620E-01
58	0.00000E+00	-0.11546E+00
59	0.00000E+00	0.552192-01
60	0.00000E+00	0.45459E-01
61	0.00000E+00	0.40623E-01
62	0.00000E+00	0.38212E-01
63	0.00000 E +00	0.35508E-01
64	0.00000 E +00	0.878462-01
65	0.00000E+00	-0.15715E+00

66	0.00000E+00	0.653822-01
67	0.00000E+00	0.54158E-01
68	0.00000E+00	0.48522E-01
69	0.00000E+00	0.45704E-01
70	0.00000E+00	0.43179E-01
71	0.00000E+00	0.10123E+00
72	0.00000E+00	-0.20527E+00
73	0.00000E+00	0.75574E-01
74	0.00000E+00	0.62744E-01
75	0.00000E+00	0.56355E-01
76	0.00000E+00	0.53160E-01
77	0.00000E+00	0.49681E-01
78	0.00000E+00	0.11433E+00
79	0.00000E+00	-0.25976E+00
80	0.0000E+00	0.85778E-01
81	0.00000E+00	0.71538E-01
82	0.00000E+00	0.64345E-01
83	0.00000E+00	0.60737E-01
84	0.00000E+00	0.57389E-01
85	0.00000E+00	0.12051E+00
86	0.00000E+00	-0.28934E+00
87	0.00000E+00	0.90866E-01
88	0.0000E+00	0.76222E-01
89	0.00000E+00	0.68790E-01
90	0.00000E+00	0.64988E-01
91	0.00000E+00	0.60910E-01
92	0.00000E+00	0.12339E+00
93	0.0000E+00	-0.30467 E +00
94	0.00000E+00	0.93387E-01
95	0.00000E+00	0.78682E-01

96	0.00000E+00	0.71308E-01
97	0.00000E+00	0.67581E-01
98	0.00000E+00	0.63741 E- 01
99	0.25000E+09	0.12604E+00
100	0.00000E+00	-0.32032E+00
101	0.37500E+09	0.95892E-01
102	0.18750E+09	0.81178E-01
103	0.93750E+08	0.73861E-01
104	0.62500 E +08	0.70313E-01
105	0.46250E+08	0.67120E-01
106	-0.45000E+08	0.25831E-01
107	0.00000E+00	0.29799E-01
108	0.00000E+00	0.31288E-01
109	0.00000E+00	0.35675E-01
110	0.00000E+00	0.42187E-01
111	0.00000E+00	0.49705E-01
112	0.00000E+00	0.56277E-01
113	0.00000E+00	0.60826E-01
114	0.00000E+00	0.62514E-01
115	0.45000E+08	0.67226E-01
116	-0.90000E+08	0.24860E-01
117	0.00000E+00	0.29050E-01
118	0.00000E+00	0.30760E-01
119	0.00000 E +00	0.34696E-01
120	0.00000 E +00	0.41504E-01
121	0.00000 E +00	0.48460E-01
122	0.00000 E +00	0.55339 E- 01
123	0.00000 E+0 0	0.59371E-01
124	0.00000E+00	0.61365E-01
125	0.90000E+08	0.65955E-01

126	-0.90000E+08	0.23563E-01
127	0.00000E+00	0.27710E-01
128	0.00000E+00	0.29341E-01
129	0.00000E+00	0.33167 E- 01
130	0.00000E+00	0.39696E-01
131	0.00000E+00	0.46422 E- 01
132	0.00000E+00	0.53003E-01
133	0.00000E+00	0.56897E-01
134	0.00000E+00	0.58707E-01
135	0.90000E+08	0.63070E-01
136	-0.45000E+08	0.23197E-01
137	0.0000E+00	0.27159E-01
138	0.00000E+00	0.28411E-01
139	0.00000E+00	0.32652E-01
140	0.00000E+00	0.38538E-01
141	0.00000E+00	0.45660E-01
142	0.00000E+00	0.51577E-01
143	0.G0000E+00	0.55900E-01
144	0.00000E+00	0.57197E-01
145	0.45000E+08	0.61436E-01
146	0.00000E+00	0.00000E+00
147	0.00000E+00	0.71778E-02
148	0.00000E+00	0.14053E-01
149	0.00000E+00	0.20279E-01
150	0.00000E+00	0.23548E-01
151	-0.15000E+08	0.23941E-01
152	0.00000E+00	0.26069E-01
153	0.00000E+00	0.28720E-01
154	0.00000E+00	0.31633E-01
155	0.00000E+00	0.38716E-01

156	0.00000E+00	0.44524E-01
157	0.0000E+00	0.51618E-01
158	0.00000E+00	0.54641E-01
159	0.0000E+00	0.57231E-01
160	0.15000E+08	0.59728E-01
161	0.00000E+00	0.59728E-01
162	0.00000E+00	0.59728E-01
163	0.31250E+07	0.59728E-01
164	0.00000E+00	0.00000E+00
165	0.00000E+00	0.00000E+00
166	0.00000E+00	0.00000E+00
167	0.00000E+00	0.00000E+00
168	0.00000E+00	0.00000E+00
169	0.00000E+00	0.00000E+00
170	0.00000E+00	-0.62365E-02
171	0.00000E+00	0.66407E-02
172	0.000002+00	0.60583E-02
173	0.00000E+00	0.49010E-02
174	0.00000E+00	0.26339E-02
175	0.00000E+00	-0.19392E-02
176	0.00000E+00	-0.24155E-01
177	0.00000E+00	0.12867E-01
178	0.00000E+00	0.11783E-01
179	0.00000E+00	0.96238E-02
180	0.00000E+00	0.52627E-02
181	0.00000E+00	-0.34704E-02
182	0.00000E+00	-0.52573E-01
183	0.00000E+00	0.18851E-01
184	0.00000E+00	0.17274E-01
185	0.00000E+00	0.14111E-01

156	0.00000E+00	0.44524E-01
157	0.00000 E+00	0.51618E-01
158	0.00000£+00	0.54641E-01
159	0.00000E+00	0.57231E-01
160	0.15000E+08	0.59728E-01
161	0.0000E+00	0.59728E-01
162	0.0000E+00	0.59728E-01
163	0.31250E+07	0.59728E-01
164	0.0000E+00	0.00000E+00
165	0.00000E+00	0.00000E+00
166	0.00000E+00	0.00000E+00
167	0.0000E+00	0.00000E+00
168	0.00000E+00	0.00000E+00
169	0.0000E+00	0.00000E+00
170	0.00000E+00	-0.62365E-02
171	0.00000E+00	0.66407E-02
172	0.00000E+00	0.60583E-02
173	0.00000E+00	0.49010E-02
174	0.00000E+00	0.26339E-02
175	0.00000E+00	-0.19392E-02
176	0.00000E+00	-0.24155E-01
177	0.00000E+00	0.12867E-01
178	0.00000E+00	0.11783E-01
179	0.00000E+00	0.96238E-02
180	0.00000 Z +00	0.52627E-02
181	0.0000E+00	-0.34704E-02
182	0.00000E+00	-0.52573E-01
183	0.00000 E +00	0.18851E-01
184	0.0000E+00	0.17274E-01
185	0.00000E+00	0.14111E-01

_1

186	0.00000E+00	0.78855E-02
187	0.00000E+00	-0.45865E-02
188	0.00000E+00	-0.70479E-01
189	0.00000E+00	0.21520E-01
190	0.0000E+00	0.19760E-01
191	0.0000E+00	0.16317E-01
192	0.0000E+00	0.92685E-02
193	0.00000E+00	-0.50653E-02
194	0.00000E+00	0.22721E-01
195	0.0000E+00	0.21115E-01
196	0.00000E+00	0.17566E-01
197	0.00000E+00	0.10061E-01
198	0.00000E+00	-0.54197E-02
199	0.00000E+00	0.24327E-01
200	0.00000E+00	0.22481E-01
201	0.0000E+00	0.18660E-01
202	0.0000E+00	0.10718E-01
203	0.00000E+00	-0.57161E-02
204	0.00000E+00	0.26229E-01
205	0.0000E+00	0.24082E-01
206	0.00000E+00	0.19872E-01
207	0.00000E+00	0.11406E-01
208	0.00000E+00	-0.59275E-02
209	0.00000E+00	0.29553E-01
210	0.00000E+00	0.27155E-01
211	0.00000E+00	0.22365E-01
212	0.00000E+00	0.12883E-01
213	0.00000E+00	-0.62042E-02
214	0.00000E+00	0.35599 Z -01
215	0.00000E+00	0.32803E-01

216	0.00000E+00	0.27217E-01
217	0.00000E+00	0.15989E-01
218	0.00000E+00	-0.64446E-02
219	0.0000CE+00	0.41621E-01
220	0.00000E+00	0.38408E-01
221	0.00000E+00	0.31968E-01
222	0.00000E+00	0.19138E-01
223	0.0000E+00	-0.65533E-02
224	0.00000E+00	0.47689E-01
225	0.00000E+00	0.44047 E- 01
226	0.00000E+00	0.36779E-01
227	0.00000 E +00	0.22184E-01
228	0.00000E+00	-0.67637E-02
229	0.00000E+00	0.50965E-01
230	0.00000E+00	0.47029E-01
231	0.00000E+00	0.39072E-01
232	0.0000E+00	0.23484E-01
233	0.00000E+00	-0.68603E-02
234	0.00000E+00	0.52884E-01
235	0.00000E+00	0.48468E-01
236	0.00000E+00	0.39986E-01
237	0.00000E+00	0.23982E-01
238	0.00000E+00	-0.68389E-02
239	0.00000 E +00	0.54036E-01
240	0.00000E+00	0.49242E-01
241	0.00000 E+0 0	0.40488E-01
242	0.00000E+00	0.24321E-01
243	0.00000 E +00	-0.66809E-02
244	0.00000E+00	-0.32032 E +00
245	0.00000 E +00	0.54036E-01

246	0.00000E+00	0.49242E-01
247	0.00000E+00	0.40488E-01
248	0.00000E+00	0.24321E-01
249	0.0000E+00	-0.66809E-02
250	0.00000E+00	-0.32032E+00
251	0.00000E+00	0.54036E-01
252	0.00000E+00	0.49242E-01
253	0.00000E+00	0.40488E-01
254	0.00000E+00	0.24321E-01
255	0.0000E+00	-0.66809E-02
256	0.00000E+00	-0.32032E+00
257	0.62500E+07	0.54036E-01
258	0.93750E+07	0.49242E-01
259	0.18750E+08	0.40488E-01
260	0.37500E+08	0.24321E-01
261	0.25000E+08	-0.66809E-02

STRESSES FOLLOW

		· ·	
	SGMABOT	SGMATOP	TAUELEM
1	-0.96832E+08	0.20163E+09	0.33346E+07
2	-0.97221E+08	0.23223E+09	0.42668E+07
3	-0.97662E+08	0.26336E+09	0.34617E+07
4	-0.86943E+08	0.27526E+09	0.17059E+07
5	-0.56664E+08	0.24077E+09	-0.22757E+08
6	-0.31570E+08	0.22852E+09	0.30736E+08
7	-0.19144E+08	0.26242E+09	0.22740E+08
8	0.80498E+06	0.29174E+09	0.14828E+08
9	0.16305E+08	0.32262E+09	0.54632E+07
10	0.19130E+08	0.33807E+09	0.15863E+06

11	0.20416E+08	0.30984E+09	-0.93561E+07
12	0.17685E+08	0.23665E+09	-0.30987E+08
13	0.85421E+07	0.15424E+09	-0.54002E+08
14	0.19906E+07	0.58011E+08	-0.78675E+08
15	-0.24752E+09	-0.96832E+08	0.45844E+07
16	-0.26088E+09	-0.97221E+08	0.58611E+07
17	-0.27857E+09	-0.97662E+08	0.44885E+07
18	-0.28418E+09	-0.86943E+08	0.99650E+07
19	-0.24033E+09	-0.56664E+08	-0.13647E+06
20	-0.17785E+09	-0.31570E+08	0.63424E+08
21	-0.13044E+09	-0.19144E+08	0.53303E+08
22	-0.11640E+09	0.80498E+06	0.31608E+08
23	-0.13006E+09	0.16305E+08	0.88319E+07
24	-0.14138£+09	0.19130E+08	-0.16488E+06
25	-0.12063E+09	0.20416E+08	-0.11367E+08
26	-0.63188E+08	0.17685E+08	-0.44518E+08
27	-0.16015E+08	0.85421E+07	-0.84443E+08
28	-0.17644E+07	0.19906E+07	-0.12074E+09
29	-0.32109E+09	-0.24752E+09	0.15406E+07
30	-0.34612E+09	-0.26088E+09	0.55932E+07
31	-0.36365E+09	-0.27857E+09	0.86522E+06
32	-0.40251E+09	-0.28418E+09	0.14019E+08
33	-0.36879E+09	-0.24033E+09	0.36426E+08
34	-0.22946E+09	-0.17785E+09	0.10874E+09
35	-0.13485E+09	-0.13044E+09	0.75305E+08
36	-0.16177E+09	-0.11640E+09	0.28705E+08
37	-0.21003E+09	-0.13006E+09	0.61505E+07
38	-0.21678E+09	-0.14138E+09	-0.35792E+06
39	-0.20095E+09	-0.12063E+09	-0.52206E+07
40	-0.11105E+09	-0.63188E+08	-0.21053E+08

41	0.70878E+07	-0.16015E+08	-0.67557E+08
42	0.21304E+08	-0.17644E+07	-0.12319E+09
43	-0.35756E+09	-0.32109E+09	0.48163E+06
44	-0.38872E+09	-0.34612E+09	0.34010E+07
45	-0.40678E+09	-0.36365E+09	0.57895E+06
46	-0.45566E+09	-0.40251E+09	0.54280E+07
47	-0.49365E+09	-0.36879E+09	0.69360E+08
48	-0.21563E+09	-0.22946E+09	0.16808E+09
49	-0.93571E+08	-0.13485E+09	0.81349E+08
50	-0.19161E+09	-0.16177E+09	0.16037E+08
51	-0.25080E+09	-0.21003E+09	0.46495E+07
52	-0.25433E+09	-0.21678E+09	-0.24469E+06
53	-0.24238E+09	-0.20095E+09	-0.22418E+07
54	-0.14975E+09	-0.11105E+09	0.41097E+07
55	0.37217E+08	0.70878E+07	-0.35371E+08
56	0.92679E+08	0.21304E+08	-0.14127E+09
57	-0.39752E+09	-0.35756E+09	0.12391E+08
58	-0.42008E+09	-0.38872E+09	-0.11199E+08
59	-0.46904E+09	-0.40678E+09	0.13011E+08
60	-0.44486E+09	-0.45566E+09	-0.26006E+08
61	-0.82061E+09	-0.49365E+09	0.10136E+09
62	-0.75409E+08	-0.21563E+09	0.29180E+09
63	0.10776E+09	-0.93571E+08	0.21460E+08
64	-0.34326E+09	-0.191612+09	0.97283E+07
65	-0.23293E+09	-0.25080E+09	0.41638E+07
66	-0.34978E+09	-0.25433E+09	-0.26277E+07
67	-0.22926E+09	-0.24238E+09	0.39777E+07
68	-0.29578E+09	-0.14975E+09	0.80823E+07
69	0.13236E+09	0.37217E+08	0.64530E+08
70	0.35154E+09	0.92679 E +08	-0.20324E+09

71	-0.14128E+10	-0.20754E+10	0.50013E+09
72	-0.24042E+10	-0.18922E+10	-0.15450E+09
73	-0.21226E+10	-0.23433E+10	0.51903E+08
74	-0.23488E+10	-0.22329E+10	-0.13578E+08
75	-0.22482E+10	-0.23498E+10	0.97283E+07
76	-0.23428E+10	-0.22293E+10	-0.26196E+07
77	-0.20902E+10	-0.22958E+10	0.20390E+08
78	-0.23248E+10	-0.18676E+10	0.13514E+09
79	-0.11151E+10	-0.16485E+10	-0.21072E+09
80	-0.13241E+10	-0.14128E+10	0.32412E+09
81	-0.23160E+10	-0.24042E+10	-0.81814E+08
82	-0.22127E+10	-0.21226E+10	0.25195E+08
83	-0.23192E+10	-0.23488E+10	-0.50890E+07
84	-0.23045E+10	-0.22482E+10	0.29591E+07
85	-0.23120E+10	-0.23428E+10	0.26092E+07
86	-0.21937E+10	-0.20902E+10	0.21170E+08
87	-0.22022E+10	-0.23248E+10	0.12030E+09
88	-0.11639E+10	-0.11151E+10	-0.68495E+08
89	-0.13412E+10	-0.13241E+10	0.30606E+07
90	-0.23475E+10	-0.23160E+10	0.42052E+06
91	-0.22348E+10	-0.22127E+10	-0.89273E+06
92	-0.23470E+10	-0.23192E+10	0.68946E+06
93	-0.23275E+10	-0.23045E+10	-0.12984E+07
94	-0.23418E+10	-0.23120E+10	0.57419E+07
95	-0.22213E+10	-0.21937E+10	0.30953E+08
96	-0.22758E+10	-0.22022E+10	0.90213E+08
97	-0.12551E+10	-0.11639E+10	0.21441E+09
98	-0.14152E+10	-0.13412E+10	-0.31989E+09
99	-0.24992E+10	-0.23475E+10	0.80553E+08
100	-0.21520E+10	-0.22348E+10	-0.24553E+08

101	-0.24114E+10	-0.23470E+10	0.48791E+07
102	-0.22878E+10	-0.23275E+10	-0.36850E+07
103	-0.24083E+10	-0.23418E+10	0.66497E+07
104	-0.21353E+10	-0.22213E+10	0.45573E+08
105	-0.24811E+10	-0.22758E+10	0.42590E+08
106	-0.13045E+10	-0.12551E+10	0.51209E+09
107	-0.21488E+10	-0.14152E+10	-0.49752E+09
108	-0.19394E+10	-0.24992E+10	0.14742E+09
109	-0.24174E+10	-0.21520E+10	-0.45783E+08
110	-0.22918E+10	-0.24114E+10	0.99768E+07
111	-0.24192E+10	-0.22878E+10	-0.66053E+07
112	-0.22906E+10	-0.24083E+10	0.74915E+07
113	-0.23955E+10	-0.21353E+10	0.55718E+08
114	-0.19640E+10	-0.24811E+10	-0.10628E+07
115	-0.20010E+10	-0.13045E+10	0.67659E+09
116	0.39805E+09	0.43834E+09	-0.12190E+08
117	0.36699E+09	0.41563E+09	0.10995E+08
118	0.34874E+09	0.36697E+09	-0.12801E+08
119	0.30036E+09	0.39032E+09	0.25549E+08
120	0.26053E+09	0.17822E+08	-0.10015E+09
121	0.54227E+09	0.75123E+09	-0.29445E+09
122	0.66086E+09	0.96063E+09	-0.19738E+08
123	0.56485E+09	0.48262E+09	-0.10095E+08
124	0.50460E+09	0.60825E+09	-0.39153E+07
125	0.50214E+09	0.48083E+09	0.14889E+07
126	0.50685E+09	0.60941E+09	0.53087E+07
127	0.55520E+09	0.50449E+09	0.53776E+08
128	0.66764E+09	0.93602E+09	0.91013E+08
129	0.36045E+09	0.89902E+09	0.56745E+09
130	59468.	-0.12464E+06	0.79085E+09

131	35680.	-74781.	0.79085E+09
132	11893.	-24927.	0.79085E+09
133	0.35437E+09	0.39805E+09	-0.57935E+06
134	0.32933E+09	0.36699E+09	-0.33031E+07
135	0.31182E+09	0.34874E+09	-0.67715E+06
136	0.27291E+09	0.30036E+09	-0.52327E+07
137	0.30660E+09	0.26053E+09	-0.69720E+08
138	0.44624E+09	0.54227E+09	-0.16835 E +09
139	0.54043E+09	0.66086E+09	-0.81001E+08
140	0.51459E+09	0.56485E+09	-0.16459E+08
141	0.46481E+09	0.50460E+09	-0.41742E+07
142	0.46054E+09	0.50214E+09	-0.12006E+07
143	0.46389E+09	0.50685E+09	0.11140E+08
144	0.49645E+09	0.55520E+09	0.47156E+08
145	0.47539E+09	0.66764E+09	0.17594E+09
146	0.20980E+09	0.36045E+09	0.35491E+09
147	-2535.9	59468.	0.32965E+09
148	-1521.7	35680.	0.32965E+09
149	-507.45	11893.	0.32965E+09
150	0.26757E+09	0.35437E+09	-0.15447E+07
151	0.25421E+09	0.32933E+09	-0.55885E+07
152	0.23653E+09	0.31182E+09	-0.87117E+06
153	0.23091E+09	0.27291E+09	-0.14003E+08
154	0.27481E+09	0.30660E+09	-0.36549E+08
155	0.33732E+09	0.44624E+09	-0.10886E+09
156	0.38509E+09	0.54043E+09	-0.75559E+08
157	0.39860E+09	0.51459E+09	-0.28515E+08
158	0.38514E+09	0.46481E+09	-0.61843E+07
159	0.37509E+09	0.46054E+09	-0.19486E+06
160	0.38117E+09	0.46389E+09	0.10904E+08

161	0.35850E+09	0.49645E+09	0.55894E+08
162	0.26551E+09	0.47539E+09	0.14181E+09
163	0.10077E+09	0.20980E+09	0.20319E+09
164	3473.6	-2535.9	0.11629E+09
165	2084.3	-1521.7	0.11629E+09
166	694.89	-507.45	0.11629E+09
167	0.97544E+08	0.26757E+09	-0.45917E+07
168	0.97157E+08	0.25421E+09	-0.58539E+07
169	0.96713E+08	0.23653E+09	-0.44958E+07
170	0.10745E+09	0.23091E+09	-0.99519E+07
171	0.13776E+09	0.27481E+09	61981.
172	0.16289E+09	0.33732E+09	-0.63509E+08
173	0.17526E+09	0.38509E+09	-0.53328E+08
174	0.19540E+09	0.39860E+09	-0.31672E+08
175	0.21053E+09	0.38514E+09	-0.87828E+07
176	0.21496E+09	0.37509E+09	81373.
177	0.20458E+09	0.38117E+09	0.11422E+08
178	0.15989E+09	0.35850E+09	0.38791E+08
179	0.99276E+08	0.26551E+09	0.59307E+08
180	0.35805E+08	0.10077E+09	0.55522E+08
181	1175.8	3473.6	~0.55906E+08
182	705.45	2084.3	-0.55906E+08
183	235.10	694.89	-0.55906E+08
184	-0.24544E+09	0.97544E+08	-0.33428E+07
185	-0.21484E+09	0.97157E+08	-0.42584E+07
186	-0.18370E+09	0.96713E+08	-0.34705E+07
187	-0.17182E+09	0.10745E+09	-0.16839E+07
188	-0.20633E+09	6.13776E+09	0.22719E+08
189	-0.21854E+09	0.16289E+09	-0.30764E+08
190	-0.18458E+09	0.17526E+09	-0.22765E+08

191	-0.15534E+09	0.19540E+09	-0.14821E+08
192	-0.12404E+09	0.21053E+09	-0.55446E+07
193	-0.11087E+09	0.21496E+09	0.41476E+06
194	-0.12104E+09	0.20458E+09	0.47076E+07
195	-0.11932E+09	0.15989E+09	0.43322E+07
196	-0.91445E+08	0.99276E+08	-0.54208E+07
197	-0.36775E+08	0.35805E+08	-0.25159E+08
198	~2705.9	1175.8	-0.14118E+09
199	-1623.6	705.45	-0.14118E+09
200	-541.10	235.10	-0.14118E+09

- 1 UPPER PEEL STRESS = -0.13210E+09
- 2 UPPER PEEL STRESS = -0.53388E+08
- 3 UPPER PEEL STRESS = -0.19007E+08
- 4 UPPER PEEL STRESS = -0.64454E+07
- 5 UPPER PEEL STRESS = -0.78777E+07
- 6 UPPER PEEL STRESS = -0.27239E+08
- 7 UPPER PEEL STRESS = -0.69977E+08
- 8 UPPER PEEL STRESS = -0.20688E+09
- 1 LOWER PEEL STRESS -0.13335E+09
- 2 LOWER PEEL STRESS = -0.53074E+08
- 3 LOWER PEEL STRESS = -0.19075E+08
- 4 LOWER PEEL STRESS = -0.64680E+07
- 5 LOWER PEEL STRESS = -0.73789E+07
- 6 LOWER PEEL STRESS = -0.23411E+08
- 7 LOWER PEEL STRESS = -0.56982E+08
- 8 LOWER PEEL STRESS = -0.15128E+09

LIST OF REFERENCES

- 1. Timoshenko, S.P., "Analysis of Bi-Metal Thermostats," Journal of the Optical Society of America, Vol 11, pp. 233-256, 1925.
- 2. Goland, M., and Reissner, E., "The Stresses in Cemented Joints," Journal of Applied Mechanics, Transactions, ASME, 11, pp. 17-27, March 1984.
- 3. Christensen, T.H., A Finite Element Analysis of a Single Lap Shear Adhesive Joint With and Without an Edge Crack, Master's Thesis, Massachusetts Institute of Technology, February 1976.
- 4. Burgreen, D., Elements of Thermal Stress Analysis, pp. 67-69 and 412-420, C.P. Press, 1971.
- 5. Lau, J.H., "Thermoelasticity for Electronic Packaging," New Technology in Electronic Packaging, pp. 111-119, ASM International, 1990.
- 6. Geschwind, G., and Clary, R., "The Technology of Multichip Modules," New Technology in Electronic Packaging, pp. 65-77, ASM International, 1990.
- 7. Tummala, R., and Rymaszewski, E., Microelectronics Packaging Handbook, Van Nostrand Reinhold, 1989.
- 8. Suhir, E., Advances in Thermal Modeling of Electronic Components and Systems, Vol 1, pp. 337-417, Hemisphere Publishing Co., 1989.
- 9. Royce, B., "Differential Thermal Expansion in Microelectronic Systems," 1988 Conference on Thermal Phenomena in Electronic Components, IEEE, pp. 171-180, 1988.
- 10. Riches, S.T., "Assessment of Materials for Large Area Die Attach," High Performance Electronic Packaging, pp. 7-16, Abington Publishing, 1991.
- 11. Chung, K.K.T., and others," Low TG Epoxy Adhesives for Thermal Management," *High Performance Electronic Packaging*, pp. 24-34, Abington Publishing, 1991.

INITIAL DISTRIBUTION LIST

		No. of Copies
1.	Library, Code 52 Naval Postgraduate School Monterey, California 93943-5002	2
2.	Department Chairman, Code ME Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93943-5000	1
3.	Naval Engineering Curricular Office, Code 34 Naval Postgraduate School Monterey, California 93943-5000	1
4.	Professor David Salinas, Code ME/Sa Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93943-5000	4
5.	Professor Young Kwon, Code ME/Kw Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93943-5000	2
6.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22304-6145	2
7.	LT Michael J. Neibert, USN Long Beach Naval Shipyard Long Beach, California 90822-5099	1